

Mitigation in Power Losses in Transmission Lines

Manish Shrivastava, Ashish Kumar, Manish Kumar, Manoj Kumar and Gaurav Rajput

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

February 13, 2020

<u>MITTIGATION IN POWER LOSSES IN</u> <u>TRANSMISSION LINE</u>

<u>ABSTRACT</u>

This section examines the effectiveness of the Unified Power Flow Controller (UPFC) to control the flow of power across the transmission line. This study deals with the digital simulation of a typical IEEE 39-bus power system using UPFC to improve the management of real and reactive power flows through the transmission line through the UPFC at the end of which three data simulations are sent. When UPFC is not installed, real and reactive power cannot be controlled through the transmission line. The circuit model for UPFC is developed using rectifiers and invert circuits. The MATLAB simulation results are presented to validate the model. The network result is added to the UPFC and is not used in line with current active and reactive lines in the line and current and reactive currents in the bus to analyse UPFC performance.

INTRODUCTION

The demand for energy efficient and high quality is growing in the electrical world. Today's power systems are very complex and they want to design new efficient and reliable devices to flexibly control energy flows in an energy degradation industry. In the late 1980s, the Energy Research Institute (EPRI) introduced a new approach to solve problems related to the design, control and operation of power systems. The proposed concept is called FACTS (Flexible AC Transmission Systems) . In the coming years, the goal of long-term development is to provide new power control capabilities to improve current performance as well as new lines . The main goal is the power transfer function, voltage control, improve the voltage stability and improve the stability of the power system. The first concept was presented by N.G. Hingorani April 19, 1988. Recommended other types of FACT controllers ever since. FACT controllers are based on voltage converters and include devices such as static voltage compensators.

The advantages and limitations of high power converters were discussed . UPFC dynamic analysis was carried out using six pulse transducer using a switching level model. The proposed technique aims to effectively control the real and reactive power flow in the transmission line by effectively changing the angle of the shunt transformer and the modified serial number indicator. They investigated three mechanisms of the UPFC control strategy to prevent power system prevention. So developed a UPFC injection model to improve the dynamic performance of the power system . Current sources and shunt and series sources . Power study of the high frequency triggers of UPFC stimulated. A further algorithm was recommended to improve power flow control using UPFC in power transmission systems . Another case study was conducted on the standard bus network. Baskar et. We offer a technique to control the real and reactive power of the gearbox. Line by three phase converters with three trees based on UPFC. In this Article, a dynamic UPFC analysis was carried out with two phase phase transducers using a switching level model with linear and non-linear loads. They suggest that the UPFC will increase with the proposed controller the real and passive power flow and improve the voltage profile during the transient phase of the power transmission system. We found that the system works better when UPFC is connected to a low voltage bus . This section presents UPFC simulation tests based on a 39-bus IEEE testing system . Investigate the ability of UPFC to control power flows across the transmission line.

Operating Principle Of UPFC

UPFC is the most comprehensive and complex FACTS tool, including the STATCOM and SSSC features. The main reasons for the widespread dissemination of the PRU are: the ability to conduct electricity correctly, to save electricity

Adjustable voltage in DC, operating capacity in operating conditions, etc. Main UPFC installers are the source of two voltage sources (VSI) that divide a capacitor for the capacitor's DC output and are combined by the transformer with the power system. One VSI is connected to a sound transmitter with one transmitter system, and the other has a sound transmitter. The DC terminals connect the two VSCs, allowing active power exchanges between the transformers. The line transducer is therefore sent to the active line at the shunt transmitter, as indicated in point 1. Therefore, according to STATCOM or SSSC, there are various control options. The UPFC can be used to control an active and reactive power supply through the transmission line and to control the transmission power of the transmission line's reactive power at the point of installation. The inverter is controlled by a line that transmits currents, controls active and reactive power streams, through a system with a phase-controlled voltage regulator and a step-to-step circuit. Therefore, this inverter is divided into active and reactive power lines. Reactive power is transmitted electronically by investor managers and the active power is continued. The inventor logic is designed to contain the continuous (positive or negative) terminal of the line

voltage across the board with continuous dc storage capacity. So

The actual net power generated by the UPFC corresponds to the loss rate between generators and their transformers. The remaining capacity of logic transformers can be used to transfer reactive power to the line to supply voltage regulation at the connection area.

Both VSI can work together to make the dcc work independently of each other. So in this case, the logical variable acts as STATCOM, which produces reactive power or takes reactive power to correct the voltage at the contact line. Instead, the UPS line acts as a SSSC that generates or generates reactive power to regulate, deploy and so act as the power that can be transmitted to the transmission lines. The UPFC can control all main power parameters, routing, transmission voltages, barriers and degree coefficient at the same time. The UPFC provides many operating modes: VAR control mode, automatic voltage control, DC voltage input mode, phase control emulator, emulsion line and automatic power flow control mode

Fig 1. Basic circuit arrangement of UPFC.

SIMULATION RESULTS AND DISCUSSION

Digital simulation is done using the blocks of Matlab Simulink and the results are presented here. Standard IEEE 39 BUS system, Simulation model in MATLAB/Simulink Environment. The Simulink Model/diagram for Standard IEEE 39-bus network with UPFC in MATLAB/Simulink Environment developed is shown. The respective waveforms are given in the figure below. A comparative performance evaluation with and without UPFC in the transmission line has been studied. The line impedance is represented by series RL combination. Fig below Shows the waveform of output voltage across load-1 without UPFC. Figure below shows the waveform of output voltage across load-1 without UPFC. Figure below shows the waveform of output voltage across load-2 without UPFC. Figure illustrates the waveform of output voltage across load-2 without UPFC. Figure illustrates the waveforms are obtained by simulating the Simulink diagram for test system in the environment of Simpower toolbox of MATLAB. Simulation stop time is set from 0 to 6 to completely analyze the stabilization time for the active power outputs. Simulink solver is used as developed Simulink model involves nonlinear elements.

The Load Flow converged in 3 iterations !

SUMMARY for subnetwork No 1

	generation PQ load		₽= p=	6166.67 6096.30			1473.34 1409.10	
Total	2shunt load	:	$\mathbf{p}_{\mathbf{n}}$	24.43	MI	Q=	24.42	Mvar
Total	ASM load	:	\mathbf{p}_{m}	0.00	MM	Q=	0.00	Mvar
Total	losses	:	\mathbf{p}_{m}	45.93	M	Q=	39.82	Hvar

1	; BUS	1 V= 1.03	6.	pu/:	345kV 21	13	deg		
		Generation							Mvar
		PQ_load	X	P=	-0.00	NN	Q=	-0,00	Mvar
		Z shunt	1	p =	-0.00	200	Q=	0.00	Nvar
	++>	BUS_2	1	\mathbb{P}^{ω}	-117.49	MN	Q=	16.90	Nvar
	>	Bus39	ï	P+	117.49	MM	0+	-16.90	Myar

2 : BUS_10 V= 0.963 pu/345kV 24.59 deg

	Generation	ł	P^{μ}	0,00	MM	Q=	0,00	Mvar
	P0_load	ź	P=	0,00	MM	Q=	-0,00	Mvar
	2 shunt	1	P=	-0.00	Mil	0+	0.00	Mvar
++>	BUS_11	:	\mathbf{p} =	361.44	MN	Q=	44.59	Mvar
+=>	BUS_13	÷	\mathbb{P}^{μ}	286.62	MH	Q=	9.34	Mvar
>	Bus32	1	P=	-648.07	NN	Q+	-53.93	Mvar

3 : BUS_11 V= 0.959 pu/345kV 23.64 deg Generation : P= 0.00 MM Q= 0.00 Mvar PQ_load : P= 0.00 MM Q= -0.00 Mvar I_shunt : P= 1.87 MM Q= 1.80 Mvar --> BUS_10 : P= -360.87 MM Q= -45.15 Mvar --> BUS_12 : P= 0.20 MM Q= 43.06 Mvar --> BUS_6 : P= 358.80 MM Q= 0.29 Mvar

4 : BUS	12 V= 0.94	10	pu/2	30kV 2	3,6	8 deg	1.000	
0.000.0200	Generation	ï	p=	0.00	89	0+	0.00	Mvar
	PQ load	\$	p=	7.50	MN	0-	88.00	Mvar
	Z_shunt	÷	p=	-0.06	MN	Q=	0.07	Mvar
	BUS_11	ł	p= .	-0.17	MN	0-	-42.18	Mvar
++>	BUS_13	4	$\mathbf{p}_{\mathbf{n}}$	-7.27	NN	Q+	-45.88	Mvar

5 : BUS_13 V= 0.961 pu/345kV 23.83 deg Generation : P= 0.00 MM Q= 0.00 Mvar

	2010/07/07/07/07/11				1000	× .	N 9 M N	111100
	PQ_load	1	\mathbb{P}^{μ}	-0.00	MM	Q+	-0.00	Nvar
	2_shunt	ţ	$p_{\rm m}$	1,88	MN	Q=	1.81	Nvar
++3	BU5_10	ł	$p_{\rm m}$	-286.27	MN	Q=	-12.26	Mvar
++>	808_12	ł	$\mathbf{p}_{\mathbf{n}}$	7.31	Mil	Q+	46.95	Mvar
++>	808_14	ŧ	p.	277.08	MM	Q+	-36.49	Mvar

6 : BUS_14 V= 0.962 pu/345kV 22.08 deg

	Generation	1	P^{\pm}	0.00	204	Q#	0.00	NVAL	
	PQ load	i	P=	0.00	MM	Q=	-0.00	Mvar	
	Z_shunt	i	P=	-0.00	MN	Q=	-0.00	Mvar	
-+>	809_13	ï	P=	-276.33	MN	0+	29.05	Mvar	
++>	BOS 4	ï	2=	265.35	MN	0+	23.04	Myaz	
>	Bus_15	ŧ	\tilde{P}^{μ}	10.98	Mi	Q=	-52.09	Mvar	

		383	0.0	/345kV 2	3.5	1 35	19,	0.000
	Generatio PQ load	علىك	P=	0.00	MW	Q.ex	0.00	ticas
	PQ load	mh	P+	329.00	MW	Q+	32,30	tical
000	a_shuna	m	14	-0.00	MN	0.0	0.00	aut.
24	3 shunt 805 17 805 19	1	P=	224.54	NN	Q=	-68.43	aur
2.			5-	-496.57	NN	0.0	44.74	aut
	BUS_21	1	27	-325.55	MM	Q.0	-36.09	that.
54	BU3_24	1	27	-41.64	MM	8.	-139,59	tivar.
2-	Rgg_15	-	P=	310.22	104	Q.	167.07	COLAR
t BUS	17 V= 0.	993	RR.	345kV 2	2.3	5 de	PR.	
	Generatio	al	P+	0.00	MW	0.0	0.00	MTAL.
	PO.10ad	1	Pe	-0.00	HW	0+	-0.00	Myar.
	RUS 16 RUS 18		P=	0.00	MN	Q=	=0.00	Brar
2	BUS 16	1	$\overline{p} =$	-224,15	MW	Q=	60.19	that.
>	805 18		p=	209.62	NN	0=	-1.03	Brat
	BUS 27	Ţ	P=	14,53	HW	0=	-59.16	thear,
: BUS	_18 V= 0.	591	Dia.	34589 2	1.3	s de	nd.	
with -	Generatio	n.1	Pa	0.00	NN	0-	0.00	STAT
	PO 10ad	1	$p_{\rm m}$	158.00	MW	0+	30:00	Brar
	2 abuat	1	P+	0.00	HW	Q=	-0.00	Myar.
>	803 17	1	P+	-209.30	HW	Qee.	-8,29	Myar.
	808 3		P=	51.30	MN	Qui	-21.71	MOAL.
0 . 00	r 18 19 8			TRANKIN'			tere	
hut m	S_19 V= 0		Bu	0.00	100	0-	0.00	Many
	Generatio PO load	****	1.	0.00	100	×.	-0.00	COLUMN.
	Salaking .	**	12	1.66	10	22	1.46	COLOR.
	9	www.	5.	500.66	MR	¥.	-24.65	MUAA.
0.0	BUG 20	- 2	2.	124 44	100	2	14 44	CLUBA T
>	3_abunt BUS 16 BUS 20 BUS 33	Ŷ	p.	-627.15	NW	Č=	8.05	MYAL
						0. di	1.79	
	5_2 V= 1.	020	-	/345kV 2	3.9		A 0.0	Marca.
	Generatio	a.L	Pa	0,00	NX	Q+	0,00	theat
	Generatio	a.L	Pa	0,00	NX	Q+	0,00	theat theat
llui 100	Generatic PO_load 2_shupt	ni.	pa pa pa	-0.00	NN NN NN	0.00	0.00 -0.00 0.00	MYAL MYAL
llui 100	Generatic PO_load 2_shupt	ni.	pa pa pa	-0.00	NN NN NN	0.00	0.00 -0.00 0.00	MYAL MYAL
llui 100	Generatic PO_load 2_shupt	ni.	pa pa pa	-0.00	NN NN NN	0.00	0.00 -0.00 0.00	MYAL MYAL
11.: 80 2. 2.	Generatio PO_load 2_abunt BUS_1 BUS_25 BUS_3		Pe Pe Pe Pe	0,00 -0.00 -0.00 118.05 -229.50 359.25	MM MM MM MM MM	335333	0.00 -0.00 0.00 -84.38 85.53 150.93	Strar Strar Strar Strar
11 : 80 2 2	Generatio PO_load & abunt BUS 1 BUS 25 BUS 3 BUS 3 BUS 3		Per p	0,00 -0.00 118.05 -229.50 359.25 -247.81	MW MW MW MW MW MW	1111111	0,00 -0,00 -84,38 85,53 150,93 -152,07	Strar Strar Strar Strar
2. 2. 2. 2. 2.	Generatio PO_load & abust BUS 1 BUS 25 BUS 3 BUS 4 BUS		P= P= P= P= P=	0.00 -0.00 118.05 -229.50 359.25 -247.81	MW MW MW MW MW 28.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,00 -0,00 -84,38 85,53 150,93 -152,07	HYAL HYAL HYAL HYAL HYAL HYAL
11 : 80 2 2	Generatio PO_load 8_abunt BUS_1 BUS_25 BUS_3 BUS		Pa Pa Pa Pa Pa	0,00 -0.00 118.05 -229.50 359.25 -247.81 /345kV 0.00	MN MN MN MN MN 28. MN	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0,00 -0,00 -84,38 85,53 150,93 -152,07 100. 0,00	HIXAL HIXAL HIXAL HIXAL HIXAL HIXAL
2. 2. 2. 2. 12_1 B0	Generatio PO_load 8_abunt BUS_1 BUS_25 BUS_3 BUS		Pa Pa Pa Pa Pa Pa	0.00 -0.00 -0.00 118.05 -229.50 359.25 -247.81 V345kV 0.00 628.00	MW MW MW MW MW 28.1 MW	0000000 700	0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 160. 0.00 103.00	HIXAL HIXAL HIXAL HIXAL HIXAL HIXAL
2. 2. 2. 2. 12_1 BU	Generatio PO_load 2_abunt BUS_1 BUS_25 BUS_3 BUS		P P P P P P P P P P P P P P P P P P P	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 0,00 628,00 -0,09	MW MW MW MW MW MW MW MW MW	3353388 73658	0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 0.00 103.00 0.10	HUAL HUAL HUAL HUAL HUAL HUAL HUAL
	Generatio PO_load & abunt BUS 1 BUS 25 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 4 FO_load & abunt BUS 19	.98 	P P P P P P P P P P P P P P P P P P P	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 0,00 628,00 -0,09 -124,42	MW MW MW MW MW MW 28 MW MW		0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 103.00 0.00 103.00 0.10 -12.43	HUAL HUAL HUAL HUAL HUAL HUAL HUAL
2. 2. 2. 2. 12_1 BU	Generatio PD_load &_abunt BUS_1 BUS_25 BUS_3 BUS_3 BUS_3 BUS_3 BUS_3 BUS_3 BUS_3 BUS_1 Scoretatic PD_load &_abunt BUS_19	.98 	P P P P P P P P P P P P P P P P P P P	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 0,00 628,00 -0,09 -124,42	MW MW MW MW MW MW 28 MW MW		0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 0.00 103.00 0.10	HUAL HUAL HUAL HUAL HUAL HUAL HUAL
	Generatio PO_load & abunt BUS 1 BUS 25 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 4 FO_load & abunt BUS 19	.98 	Para Para Para Para	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 0,00 628,00 -0,09 -124,42 -503,48	MW MW MW MW MW MW MW MW MW MW		0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 103.00 0.00 103.00 0.10 -12.43 -90.68	HUAL HUAL HUAL HUAL HUAL HUAL HUAL
2. 2. 2. 2. 2. 2. 2. 2.	Generatio PO_load 2_abunt BUS 1 BUS 25 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 19 BUS 34 S_21 V= 0 Generatio Generatio	.98 .98 .99	Para and a sale of a	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 0,00 628,00 -0,09 -124,42 -503,48 (345kV 0,00	MW MW MW MW MW MW MW MW MW MW MW MW	3355555 765555 g8	0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 103.00 0.00 103.00 0.10 -12.43 -90.68 163. 0.00	HUAL HUAL HUAL HUAL HUAL HUAL HUAL HUAL
11 : 00 2 2 2 12 1 80 >	Generatio PO_load 2_abunt BUS 1 BUS 25 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 19 BUS 34 S_21 V= 0 Generatio Generatio	.98 .98 .99	Para and a sale of a	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 0,00 628,00 -0,09 -124,42 -503,48 (345kV 0,00	MW MW MW MW MW MW MW MW MW MW MW MW	3355555 765555 g8	0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 103.00 0.00 103.00 0.10 -12.43 -90.68 163. 0.00	HUAL HUAL HUAL HUAL HUAL HUAL HUAL HUAL
11 : 80 2 2 2 12 1 80 >	Generatio PO_load 2_abunt BUS 1 BUS 25 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 19 BUS 34 S_21 V= 0 Generatio Generatio	.98 .98 .99	Para and a sale of a	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 0,00 628,00 -0,09 -124,42 -503,48 (345kV 0,00	MW MW MW MW MW MW MW MW MW MW MW MW	3355555 765555 g8	0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 103.00 0.00 103.00 0.10 -12.43 -90.68 163. 0.00	HUGAL HUGAL HUGAL HUGAL HUGAL HUGAL HUGAL HUGAL
11 : 80 2 2 12 1 80 > 13 1 80	Generatio PO_load & abunt BUS 1 BUS 25 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 3 BUS 4 BUS 19 BUS 34 BUS 19 BUS 35 BUS 30 BUS 3	98	ARTER PERSON PERSON	0,00 -0,00 -0,00 118,05 -229,50 359,25 -247,81 (345kV -0,00 -0,09 -124,42 -503,48 (345kV 0,00 274,00 0,00 326,42	MW MW MW MW MW MW MW MW MW MW MW MW MW M		0.00 -0.00 0.00 -84.38 85.53 150.93 -152.07 103.00 0.10 -12.43 -90.68 103.00 0.10 -12.43 -90.68	HOAL HOAL HOAL HOAL HOAL HOAL HOAL HOAL

14 : BUS_22 V= 1.022 pp/345kV 30.77 deg

Generat	ion I	P=	0,00	MW	Q=	0,00	Myar	
EQ_1080	mi	p.	0.00	MW	Q=	=0,00	Myar	
2, abunt	uni	P=	-0.00	MW	Q+	0.00	MYAL.	
> BUS 21				MW	Q+	167,83		
> BUS 23		P+	44.34	MW	Q+	1,42	Myar	
2Bug35	;	? =	-647,80	MW	Q=	-169.25	Myar.	

15 : BUS_23 V= 1.020 mu/345kV 30.54 deg Generation : P= 0.00 MW Q= 0.00 Myar EQ_load : P= 247.50 MW Q= 84.60 Myar Z_shunt 1 P= -0.02 MW Q= 0.02 Myar --2 BUS_22 : P= -44.33 MW Q= -20.48 Myar --2 BUS_24 : P= 353.02 MW Q= 48.68 Myar --2 BUS_24 : P= -556.17 MW Q= -112.82 Myar

16.: 005_24 V= 0.997 gg/345kV 23.66 deg

90	an a that ha	Mul	P#					axie.
PO	load	1	P=	308,60	MW	Q+	-92,00	Myar
h.	shunt	mi	p=	0.00	MN	Q=	0,00	Myar.
280	\$ 16	:	p.	41.70				
> BU	\$ 23	1	P+	-350.30	MW	Q+	-42.12	Myar

17 : BUS_25 V= 1.028 pu/345kV 25.64 deg

	Generati	an.i.	p.	0.00	MW	Q:	0.00	trai
	PO load	l	P#	224,00	MW	Q+		
	L shunt	mi	p=	-0,03	MW	Q=	0.03	Myar
**2.	BUS 2	1	p.	234.21	MW	Q+	-94.59	Myan.
2	BUS 26	1	P+	78.03	MW	Q١	-0.85	Myar
++2	811237	1	p.	-536.22	MW	0=	48.20	Myar

18.; BUS_26 V= 1.018 pu/345kV 24.31 deg

	Generati	1.00	P#	0.00	MW	Q.	0.00	Myar.
	PO load	mi	P =	139.00	MW	Q=	17,00	Myar
	Laburt	min	ţ.	0.00	MW	Q=	0.00	Myaz.
2	BUS 25	4	P+	-77.82	MW	Q#	-50,87	Myar
2	BUS 27						90.32	
2	805 28	4	p.	+139.11	MW	Q=	=26.40	Myaz.
2	BUS_29	1	P+	-189.67	MW	Q=	-30.05	Hvar.

17 : BUS 25 V= 1.028 pu/345kV 25.64 deg

10,0,00	Generatio	n :	Pu	0.00	MW	0=	0.00	Mvar	
	THE REAL PROPERTY OF THE PROPE							And all all all all all all all all all al	
	Z shunt	_	₽=	-0.03	MW	Q=	0.03	Mvar	
>	BUS 2	1	P=	234,21	MW	Q=	-94.59	Mvar	
>	BUS 26	:	₽=	78.03	MW	Q=	-0.85	Mvar	
>	Bus37	:	₽=	=536.22	MW	Q=	48.20	Mvar	

18 : BUS_26 V= 1.018 pu/345kV 24.31 deg

	Generati	on :	₽=	0.00	MW	Qn	0.00	Mvar
	PQ load		₽=		MW	Q¤	17.00	Mvar
	Z shunt		P=	0.00	MW	Q=	0.00	Mvar
>	BUS 25			=77.82	MW	Q#	-50.87	Mvar
>	BUS 27	:	Pa	267.61	MW	Q=	90.32	Mvar
>	BUS 28	;	₽=	-139.11	MW	Qm	-26.40	Mvar
>	BUS 29	;	P=	-189.67	MM	Q=	-30.05	Mvar

19 ; BUS_27 V= 1.000 pu/345kV 22.18 deg

	Generation	.:	P=	0.00	MW	Q+	0.00	Mvar
	PQ load	1	p.	281.00	MW	Q=	75.50	Mvar
	Z shunt		₽=	0.00	MW	Q=	-0,00	Mvar
>	BUS 17	:	₽=	-14.50	MW	Q=	27.57	Mvar
>	BUS 26	;	₽=	-266.50	MW	Q=	-103.07	Mvar

20 : BUS_28 V= 1.019 pu/345kV 27.96 deg

	Generation	:	P=	0.00	MW	Q=	0.00	Mvar
	PQ load	1	P=	206.00	MW	Q=	27.60	Mvar
	Z shunt	1	₽=	0.00	ŴŴ	Q=	0.00	Mvar
>	BUS 26	;	₽=	139.91	MW	Q=	-45.92	Mvar
>	BUS 29	4	P=	-345,91	MW	Q=	18.32	Mvar

21 : BUS 29 V= 1.021 pu/345kV 30.86 deg

	Generati	on :	₽=	0.00	MW	Q=	0.00	Mvar
	PQ load		₽=	283.50	MW	Q=	26.90	Mvar
	Z shunt		₽=	-0,05	MW	Q=	0.06	Mvar
>	BUS 26	-	₽=	191.64	MW	Q#	-55,66	Mvar

23. 1 Bus30 V= 1.048 pg/22kV -3.69 deg Generation : P= 250.00 NW Q= 168.99 Myar EQ load : P= 0.00 NW Q= 0.00 Myar 3. Bunnt : P= 2.19 NW Q= 2.19 Myar 2. 508_2 : P= 247.81 NW Q= 166.79 Myar
30.1 Bus31 V= 0.982 gg/22kV 0.00 ggg / Swing bus Generation : P= 546.67 NM Q= 145.37 Musz FQ load P= 9.20 NM Q= 4.60 Musz Z. Bount P= 1.93 NM Q= 1.93 Musz 2B55_6 : P= 535.54 NM Q= 138.84 Musz
31_1 Bus32 V= 0.963 gg/22kV 2.46 dmg Generation I P= 650.00 MM G= 147.14 Brar PQ_load I P= 0.00 MM G= 0.00 Brar Z_BRUNE I P= 1.93 MM G= 1.93 Brar >BUS_10 I P= 648.07 MM G= 145.21 Brar
<u>32 1</u> Bus33 V= 0.997 pg/22kV 4.45 deg Generation 1 P= 632.00 MM Q= 50.90 Myar PQ load 1 P= 0.00 MM Q= 0.00 Myar Z Bunh 1 P= 2.04 MM Q= 1.94 Myar ≥ BUS 19 T P= 629.96 MM Q= 48.96 Myar
33 r Bus34 V= 1.012 pg/22kV 3.43 dmg Generation.: P= 508.00 MM Q= 141.02 Myar KO_load P= 0.00 MM Q= 0.00 Myar Z. Abunt P= 2.10 MM Q= 2.00 Myar 2
34.: Bus35 V= 1.049 BU/22KV 5.73 dBS GEDERATION : P= 650.00 MW Q= 232.87 MMAX 10.Load P= 0.00 MW Q= 0.00 MMAX Z.BOAR P= 2.20 MW Q= 2.20 MMAX 2BUS 22 : P= 647.80 MW Q= 230.66 MMAX
35. i Bun36 V= 1.063 BU/22KV 8.52 dBS GENERATION : P= 560.00 NM Q= 199.19 MVAX EQ.LOAD P= 0.00 NM Q= 0.00 MVAX ADVAL P= 2.28 NM Q= 2.24 MVAX >BUE 23 F P= 557.72 NM Q= 196.95 MVAX
36.1 Bus37 V= 1.028 DB/22XV 2.41 dBS Generation_: P= 540.00 MM G= 17.47 MMAL ICLical P= 0.00 MM G= 0.00 MM G= Abunt P= 0.14 MM G= 2.08 MMAL 2 MM G= 537.86 MM G= 15.38 MMAL
37.; Bus38 V= 1.026 gg/22XV 7.92 ggg Generation; P= 830.00 MM G= 48.42 Myar KG_koad : P= 0.00 MM G= 0.00 Myar 3. abunt : P= 2.16 MM G= 2.05 Myar 2. mill 29 : P= 827.84 MM G= 46.37 Myar
38.4 Hum39 V= 1.030 gg/345kV 19.57 dog Generation.; P= 1000.00 MW Q= 321.97 Myas. 20. Load P= 1104.00 MW Q= 250.00 Myas. 2. should P= -0.00 MW Q= -0.00 Myas.
> <u>BUS</u> 1 : P= -117.36 MW Q= -59.95 <u>Mvar</u> > <u>BUS</u> 9 : P= 13.36 MW Q= 131.93 <u>Mvar</u>

<u>39 :</u> Bus 15 V= 0.970 pu/345kV 21.90 deg <u>Generation :</u> P= 0.00 MW Q= 0.00 Mvar <u>PO load</u> : P= 320.00 MW Q= 153.00 Mvar <u>Z shunt</u> : P= 0.00 MW Q= 0.00 Mvar --> <u>BUS 14</u> : P= -10.95 MW Q= 18.26 Mvar --> <u>BUS 16</u> : P= |-309.05 MW Q= -171.26 Mvar

References

> Vibhor Gupta, "Study and Effects of UPFC and its Control System for Power Flow Control and Voltage Injection in a Power System", International Journal of Engineering Science and Technology, vol.2 (7), 2010, pp-2558-2566.

> Distributed generation and FACTS Technology - Wikipedia, the free encyclopaedia.

> J. Hao, L. B. Shi, and Ch. Chen, "Optimizing Location of Unified Power Flow Controllers by Means of Improved Evolutionary Programming", IEE Proc. Genet. Transm. Distrib. 151(6)(2004), pp. 705–712.

> N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. New York: IEEE Press, 2000.

> L. Gyugyi, T. Rietman, and A. Edris, "The UPFC Power Flow Controller: A New Approach to Power Transmission Control", IEEE Trans. on Power Delivery, 10(2) (1995), pp. 1085–1092.

> I.Papic, "Mathematical analysis of FACTS devices based on a voltage source converter, part II: steady state operational characteristics", Electric Power systems Research, vol. 56, pp. 149-157, 2000.

> I.Papic, "Mathematical analysis of FACTS devices based on a voltage source converter, part 1: mathematical models", Electric Power systems Research, vol. 56, pp. 139-148, 2000.

> S.D. Round, Q. Yu, L.E. Norum, T.M. Undeland, "Performance of a Unified power flow controller using a D-Q control system", IEEE AC and DC power transmission Conference, Pub.IEE No 423, pp. 357-362, 1996.

> Q. Yu, S. D. Round, L. E. Norum, T. M. Undeland, "Dynamic control of UPFC", IEEE Trans.Power Delivery.vol.9 (2), pp.508 – 514, 1996.

> D. Soto and T. C. Green, "A comparison of high-power converter topologies for the implementation of FACTS controllers," IEEE Trans. Industrial Electronics, vol. 49, no. 5, pp. 1072–1080, October 2002.

> M. S. El-Moursi and A. M. Sharaf, "Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation," IEEE Trans. Power System, vol. 20(4), pp. 1985–1997, Nov. 2005.

> J. Rodriguez, J. S. Lai, and F. Z. Peng, "Multilevel Inverters: A survey of topologies, controls and applications," IEEE Trans. Industrial Electronics, vol. 49, no. 4, pp. 724–738, Aug. 2002.

> C. k. Lee, J. S. K. Leung, S. Y. R. Hui, and H. S. H. Chung, "circuit level comparison of STATCOM technologies", IEEE Trans. Power Electronics, vol.18, no.4, pp.1084-1092, July 2003.

> S. Baskar, N. Kumarappan and R. Gnanadass," Switching Level Modelling and Operation of Unified Power Flow Controller", Asian Power Electronics Journal, vol.4, No.3, December 2010.

> S. Limyingcharoen, U. D. Annakkage, and N. C. Pahalawaththa, "Effects of Unified Power Flow Controllers on Transient Stability", IEEE Proceedings Generation Transmission and Distribution, 145(2), 1998, pp. 182– 188.

> Z. J. Meng and P. L. So, "A current Injection UPFC Model for Enhancing Power System Dynamic Performance", Proceedings of IEEE Power Engineering Society Winter Meeting, 2(23–27) (2000), pp. 1544–1549.

> M. A. Abido, "Power System Stability Enhancement using FACTS Controllers: A Review", The Arabian Journal for Science and Engineering, Volume 34, Number 1B, April 2009.

> H. Fujita, Y. Watanabe, and H. Akagi, "Control and Analysis of a Unified Power Flow

> Samina Elyas Mubeen, R.K.Nema and Gayatri Agnihotri, "Power Flow Control with UPFC in Power Transmission System", World academy of science, Engineering and Technology,2008.

> S. Baskar, N. Kumarappan and R. Gnanadass, "Enhancement of Reactive Power Compensation using Unified Power Flow controller", Elektrika, Vol.13, No. 1, 2011, pp-13-23.

> Ch. Chengaiah, G.V.Marutheswar and R.V.S.Satyanarayana, "Control Setting of Unified Power Flow Controller through Load Flow Calculation", ARPN Journal of Engineering and Applied Sciences, Vol.3, No. 6, December 2008.

> B.M. Zhang, S.S. Chen, "Advanced Power Network Analysis", Tsinghua Publishing House, 1996, pp. 311-313.

> M. Noroozian, L. Anguist, M. Ghandhari and G. Andersson, Use of UPFC for optimal power flow control. IEEE Trans. on Power Delivery, Vol.17, No.4 (1997), pp. 1629–1634.

> "The symmetrical Hybrid Power Flow Controller- A New technology for Flexible AC Transmission (FACTS)".

> S. Tara Kalyani and G.Tulasiram Das, "Simulation of Real and Reactive Power Flow Control with UPFC Connected to a transmission line", Journal of Theoretical and Applied Information Technology, 2008.

> S. N. Singh and I. Erlich, "Locating Unified Power Flow Controller for Enhancing Power System Load ability.

> A. Mete Vural, Mehmet Tumay, "Mathematical modelling and analysis of a unified power flow controller: A comparison of two approaches in power flow studies and effects of UPFC location", Electrical Power and Energy Systems, vol. 29, pp. 617–629, 2007.

> K.S. Verma, S.N. Singh and H.O. Gupta, "Optimal location of UPFC for congestion management", Electric Power Systems Research, Vol. 58, No.2, pp. 89-96, July 2001.