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Abstract. Action prediction aims to predict an ongoing activity from an incom-

plete video, which is an important branch of human activity analysis with the 

important application in a number of fields, such as security surveillance, hu-

man-machine interaction, automatic driving, etc. Due to time continuity, there 

are a large number of redundant frames in video action sequences, which often 

brings challenges such as low computational efficiency and noise for action 

prediction. Most of the existing works levarage dense sampling or sparse sam-

pling for processing video frames and characterize actions. On the one hand, the 

dense sample-based method often introduces redundant noise for predictions, 

easily causing confusing of the action semantics. On the other hand, although 

sparse sample-based method can alleviate the problem of redundant noise to a 

certain extent, it ignores the impact of sampling rate on action representation. In 

this paper, we combine the two-stream network framework and the teacher-

student network framework to build an action prediction model, and discuss the 

influence of action representation under different sampling rates for partial or 

full videos. In this way, we can select more appropriate frames for video repre-

sentation and thus achieve more accurate action prediction. The method pro-

posed in this paper has achieved the current state-of-the-art performance on the 

standard dataset, i.e., UCF101, which verifies the effectiveness of our method. 
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1 Introduction 

Early action prediction aims to recognize the semantic information of the action an 

ongoing video. With the development of deep network in image classification and 

video understanding, methods based deep learning has become the mainstream meth-

ods in the field of action prediction in recent years [1][2][3][4][5][6][7]. 

As shown in Figure 1, it is a challenging task to accurately and quickly recognize 

the semantics of current actions from an incomplete video, especially when the ac-

tions are performed at very early stages. At the same time, the motion information 

contained in partial videos with different observation rates is also very different, even 

for the same action. How to extract robust features from these incomplete videos 

while reducing the influence of redundant noise caused by the temporal continuity of 

video frames is very important to the problem of video action prediction. 
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Fig. 1. Early action prediction, which predicts action label given a partially observed video. 

Many works have been proposed for early action prediction. For instance, Kong et 

al. [1] extended marginalized stacked autoencoder (MSDA) to sequential data, which 

utilizes rich sequential context information to better capture the appearance evolution 

and temporal structure of the full action videos. To avoid the effect of noise caused by 

the background of the RGB frames as much as possible, Chen et al. [2] used the 

skeletal data to model and analyze actions. Liu et al. [3] also used the human skeletal 

sequence and introduced dilated convolutional network to model motion dynamics via 

a sliding window over the time axis. Gammulle et al. [5] proposed to use a GAN to 

generate future action descriptors and then classify them. Based on the idea of 

knowledge distillation, Wang et al. [6] used teacher network for action recognition to 

guide student network for prediction tasks, thus improving the accuracy of the predic-

tion network. The above-mentioned works use sparse sampling strategies, i.e., a fixed 

number of frames are sampled for a video regardless of its length. This data sampling 

method alleviates the redundancy and noise problems caused by using all video 

frames to a certain extent, and fully utilizes the temporal information of the action 

sequence. But another problem is that different frame rates of sampling may affect the 

performance of early action prediction, which is ignored by the previous work. For 

example, key motion information is missing from few frames, while reductant noise 

from all video frames is disturbing the network. 

In this work, we explore the impact of different data sampling rates on early human 

action prediction, aiming to provide a guiding significance for subsequent related 

works. Firstly, we sample different numbers of video frames for partial and full vide-

os. Secondly, the pre-trained BN-Inception network on Kinetic-400 is used to extract 

features of partial and full videos, respectively. The teacher-student network frame-

work proposed in [6] is used as the pipeline for early action prediction. We evaluate 

the performance on UCF101 dataset and obtain the current start-of-the-art (SOTA) 

performance, verifying the effectiveness of the proposed method. The experimental 

results show that it is unnecessary to use all frames for early action prediction, and 

different framerates have limited affect for predictions. 

In summary, the main contributions of our work in this article are as follows: 

⚫ For data sampling, we discuss the efficiency of different data sampling rates 

on early action prediction, and provide a novel guidance significance for sub-

sequent works. 

⚫ The proposed method is evaluated on the UCF101 dataset and achieves the 

state-of-the-art performance, verifying the influence of different sampling 

rates on early action prediction. 
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2 Related Work 

In this part, we mainly discuss related works in the field of action prediction. 

2.1 Action Recognition 

Early action recognition mainly relied on manual features extracted from video (such 

as 3DHOG [8], SIFT [9], etc.) to model action appearance information and motion 

information. In recent years, as the progress of deep learning for a series of vision 

tasks, deep network has developed into the main methods for action recognition, 

which mainly includes Convolutional Neural Networks (CNN) [10][11][12] and Two-

Stream networks [13][14], which achieves state-of-the-art recognition results on 

UCF101[15], Kinetics [16] and other datasets. Tran et al. [17] proposed the deep 3-

dimensional convolutional networks (C3D) model, which used 3D ConvNets to mod-

el the spatio-temporal and motion information of video actions. The author verified 

that the linear classifier with C3D feature achieves the best effect in various video 

analysis tasks. However, the increasing depth of the network is limited due to the 

expensive computational cost and memory requirements of 3D ConvNets. Qiu et al. 

[17] proposed to decouple the 3D convolution into a 2D convolution for spatial mod-

eling and a 1D convolution for temporal modeling. Therefore, the author built a Pseu-

do-3D Residual Networks (P3D) network to simulate 3D ConvNets to learn the spa-

tio-temporal representation of videos, and verified the effectiveness and generaliza-

tion of its spatio-temporal representation on five commonly used datasets. Different 

from 2D CNN and 3D CNN, Simonyan et al. [14] proposed the two-stream network 

that uses two parallel networks. One of which uses still images as input to obtain the 

appearance information of video actions, and the other uses multi-frame dense optical 

flow as input to obtain the motion information of the video actions. The two kinds of 

information are merged at the end to realize the final action classification. In order to 

use the information of the entire video without being limited by the length of time, 

Wang et al. [12] proposed Temporal Segment Networks (TSN) for long-term model-

ing. Firstly, the full video was divided into K segments, then each segment passes 

through the two-stream network to obtain the action representation and category 

scores. Finally, the two networks are merged to achieve video-level prediction. Be-

cause the spatial background of the video and the occurrence of actions often do not 

change synchronously, Feichtenhofer et al. [19] proposed a SlowFast network, which 

also uses two paths. One pathway is designed to capture semantic information that 

can be given by images or a few frames, which operates at low frame rates and slow 

refreshing speed. The other pathway is responsible for capturing rapidly changing 

motion by operating at fast refreshing speed and high temporal resolution. The two 

pathways are fused by lateral connections. 

2.2 Action Prediction 

For video action prediction, many methods based on deep learning have emerged in 

recent years. Kong et al. [1] proposed a Deep Sequential Context Networks (Deep-
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SCN) for early action prediction. The author believed that the confidence of predic-

tion increases with the number of observed frames. In [1], the author directly used the 

C3D features [17] generated by video frames through a structured support vector 

machines (SVM) to capture the time structure of human behavior. Chen et al. [2] 

extracted human skeleton points under the framework of deep reinforcement learning 

to characterize the human body structure. Their proposed method activated the action-

related parts of the feature to capture action-related information and suppress the in-

fluence of noise. To solve the different duration of different actions, Liu et.al. [3] 

proposed a time scale selection network Scale Selection Network (SSNet), which 

adaptively selects the number of frames for prediction according to the duration of the 

action. In this way, the author can suppress the influence of noise. To make full use of 

the global information of the video, Wang et al. [6] proposed to distill some useful 

knowledge from the teacher model to facilitate the student prediction model. Alt-

hough the above works [1][2][3][6] did not use all frames of the video, they have not 

discussed and explored the impact of different number of the videos for early action 

prediction. Therefore, in this paper, we discuss the influence of different sampling 

rates on action representation in action prediction. 

3 Methodology 

In this section, we introduce in detail how our manuscript performs data sampling 

strategies and feature extraction. First, we introduce the overall framework of the 

network. Then we introduce the sampling method and feature extraction method in 

our framework. 

As shown in Figure 2, in our work, we divide a full video into 𝑁 ( 𝑁 = 10 ) sub-

segments of equal length. The first 𝑛 sub-segments are defined as the progress level 𝑛 

with an observation rate of 𝑛/𝑁 . We use 𝑥𝑛  to represent the feature of the sub-

segment of the progress level 𝑛. 

 

Fig. 2. Definition of some concepts. Taking the progress level of 4 as an example, this fig-

ure shows the division of video, the definition of the progress level, and the representation of 

features in motion prediction. 
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3.1 Overview 

In this work, we use the teacher-student network framework proposed in [6] as the 

basic model. The overall network framework is shown in Figure 3. 

 
Fig. 3. Overall framework. The overall structure of the network based on the 

framework of the teacher-student network in [6]. 
Given the currently observed partial action video, our goal is to predict the action 

semantic label 𝑦 of the video. 

The teacher network can be defined as: 

𝐹𝑇 = 𝑇(𝐶(𝑋)) (1) 

Where 𝑋 represents the frame after sampling the fragments of different progress 

levels. 𝐶( · ) represents the feature extraction through the convolutional neural net-

work [20]. The feature representation of different progress levels generated after the 

convolutional neural network are recorded as 𝑥𝑖 , 𝑖 = (1, 2, … , 𝑁). 𝑇( · )  represents 

the teacher network [6]. After passing through the teacher network, the feature repre-

sentation under different progress levels are recorded as 𝑓𝑖
𝑇, and the feature represen-

tation under all progress levels are recorded as 𝑇, 𝑇 = {𝑓1
𝑇 , 𝑓2

𝑇 , … , 𝑓𝑁
𝑇}. 

The student network used for prediction can be defined as: 

𝐹𝑆 = 𝑆(𝐶(𝑋)) (2) 

𝑦 = 𝑉(𝐿(𝐹𝑆)) (3) 
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Where 𝑋 and 𝐶( · ) indicate the same as the teacher network in formula (1). 𝑆( · ) 

represents the student network [6]. After passing through the student network, the 

feature representation under different progress levels are recorded as 𝑓𝑖
𝑆, and the fea-

ture representation under all progress levels are recorded as 𝑆, 𝑆 = {𝑓1
𝑆, 𝑓2

𝑆, … , 𝑓𝑁
𝑆}. 

The feature 𝐹𝑆 obtained by the student network passes through the linear layer 𝐿( · ) 

and the final Softmax layer 𝑉( · ) to finally obtain the predicted label 𝑦. 

The teacher-student network is the same as [6]. In the following sections we will 

further describe the feature extraction and data sampling strategies. 

3.2 Feature Processing 

To explore the number of frames of partial and full videos for early action prediction, 

we represent the human action under different sampling rates for early action predic-

tion. Our detailed implementation for feature extraction is as follows. Firstly, we ex-

tract the dense optical flow characterization 𝐴 from the full video. Then we use a 

sliding window with a size of 5 and a stride of 1 to sample a number of frames on 𝐴, 

and the sampled frames are used as the input of BN-Inception [20] for feature extrac-

tion. Finally, we obtain the feature representation of the full video, denoting by B. 

3.3 Date Sampling Strategies 

To obtain the feature representation of different progress levels for prediction, we 

obtain the feature representation for different partial videos from the feature represen-

tation 𝐵 of the full video. Finally, we use different sampling rates to sample the fea-

tures of the partial videos or full videos, and the final features are obtained by mean 

pooling operation, denoting by 𝑥𝑖 , 𝑖 = (1, 2, … , 𝑁), where 𝑥𝑖  is a one-dimensional 

feature vector with a size of 1024. 

4 Experiments 

We test our proposed method on a benchmark dataset, i.e., UCF-101[15]. Below, we 

will analyze the experimental details and results. 

4.1 Implementation Details 

We use the same experimental settings as in [6] on the RGB dataset UCF101. To 

generate feature representation for teacher and student network learning, we use the 

pre-trained BN-Inception network on Kinetic-400 [16] to extract the features of the 

partial video and the full video, respectively. For the partial video and the full video, 

we use a stride length of 5 to sample L frames, ranging from 10 to 60, to form the 

video representation. 
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4.2 Experiments on the UCF-101 Dataset 

The UCF101 dataset [15] contains 101 categories and a total of 13,320 videos. The 

video duration is about a few seconds of length. 

The detailed experimental results are shown in Table 1. Compared with the base-

lines that use all frames, the accuracy of our method is the best regardless of the sam-

pling rates. The experimental results show that it is unnecessary to use all frames for 

early action recognition. Proves that using all frames may cause redundant noise for 

accurate prediction. As shown in Table 1, the performance of different sampling rates 

is similar. And the sampling rate ranging from 15 to 20 works the best. When the 

number of sampling frames continues to increase, it will introduce more irrelevant 

information for the action, which easily cause misclassification, especially using all 

video frames for the prediction. 

Table 1. Prediction results (%) on the UCF101 set. 

Observation ratio 10% 30% 50% 70% 100% Mean 

Baseline 75.34 90.28 93.26 93.92 94.87 91.04 

L=10 86.39 91.25 93.45 94.38 95.30 92.68 

L=15 86.42 91.61 93.56 94.79 95.36 92.88 

L=20 86.37 91.39 93.59 94.41 95.25 92.75 

L=25 86.26 91.25 93.59 94.49 95.38 92.79 

L=30 86.12 91.50 93.40 94.43 95.22 92.67 

L=35 86.34 91.55 93.51 94.68 95.46 92.79 

L=40 86.04 91.47 93.35 94.46 95.33 92.68 

L=45 86.50 91.31 93.56 94.51 95.19 92.68 

L=50 86.58 91.44 93.35 94.51 95.46 92.75 

L=55 86.18 91.44 93.37 94.51 95.46 92.75 

L=60 86.01 91.44 93.43 94.35 95.33 92.67 

5 Conclusion 

In this paper we discuss the redundancy of videos in the field of video action predic-

tion, and verified the influence of action representation under different sampling rates 

on the accuracy of action prediction. We have empirically shown that it is unneces-

sary to use all frames of the video for early action prediction, and different sampling 

rates of the videos show similar performance, but 15~20 frames are the more proper 

sampling rates. We hope that the discussion in this paper will provide guiding signifi-

cance for future work in the field of video action prediction. How to make full use of 

the limited information while reducing the impact of video redundancy and noise has 

further research significance for action representation and predictive performance. 
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6 Future Work 

If necessary, to obtain detailed experimental support, we plan to use more backbones 

for verification on more datasets. 
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