ﬁ EasyChair Preprint

Ne 1490

A component-based formal language workbench

Peter Mosses

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 12, 2019

A Component-Based Formal Language Workbench

Peter D. Mosses
Delft University of Technology, Delft, The Netherlands
p.d.mosses@tudelft.nl

The CBS framework supports component-based specification of programming languages. It aims
to significantly reduce the effort of formal language specification, and thereby encourage language
developers to exploit formal semantics more widely. CBS provides an extensive library of reusable
language specification components, facilitating co-evolution of languages and their specifications.

After introducing CBS and its formal definition, this short paper reports work in progress on gen-
erating an IDE for CBS from the definition. It also considers the possibility of supporting component-
based language specification in other formal language workbenches.

1 Introduction

Developers of major programming languages always give formal specifications of syntax. For semantics,
however, they usually resort to informal explanations. They sometimes define the formal semantics of
sublanguages, but scaling up to full languages is usually regarded as a huge effort, and not worthwhile.

To encourage language developers to specify formal semantics of their full languages, it is essential
to reduce the effort required — not only for an initial specification, but also for co-evolution of language
specifications with the specified languages. The CBS framework aims to do just that, by providing an
extensible library of reusable language specification components. The semantics of the components is
defined once and for all, so simply translating a programming language to compositions of components
specifies the language semantics. And specifying such translations can be significantly less effort than
specifying language semantics directly.

Crucially, the definition of each component in the CBS library can be validated independently:
adding new components to the library cannot invalidate bisimulation equivalences of previous com-
ponents. After a component has been validated and released, its defined behaviour cannot be changed,
so each occurrence of a particular component name in CBS specifications refers to the same definition.
When a specified language evolves, its translation to components always has to change accordingly, as
the components themselves cannot change.

Use of CBS is supported by an IDE for editing and validating specifications of components and
languages. Validation is currently based on testing prototype implementations generated from specifi-
cations. The IDE is itself generated from a formal definition of the syntax and static analysis of CBS,
which is specified in declarative meta-languages supported by the Spoofax language workbench [22].
CBS and its IDE have been developed by the PLanCompS projectE]

Here, after recalling the main features of the CBS framework (§2)), we give a progress report on the
formal definition of CBS (§3). We explain how an IDE for CBS is generated from the definition (§4),
and how prototype implementations of programming languages are generated from their specifications
in CBS (§5). We also compare CBS with some other language specification frameworks regarding the
possibility of defining libraries of reusable components (§0)).

'Programming Language Components and Specifications, http: //plancomps . org.

Preliminary Report. Final version to appear in:
F-IDE 2019

http://plancomps.org

2 A component-based formal language workbench

2 Component-based specification of programming languages

We start by briefly recalling the main features of the CBS framework for component-based specification.
For more detailed expositions, see [S} 7 110} [15]].

A CBS for a programming language is a specification of an inductively-defined translation function,
mapping well-formed program phrases to terms formed from so-called fundamental programming con-
structs (‘funcons’). The specification includes a grammar for the (concrete and abstract) syntax of the
language, and a translation equation for each alternative of the grammar. The translation of programs to
funcon terms, together with the semantics of funcons, determines the semantics of the programs:

translation operational

Programs » Funcons -
semantics

»

Computations

The funcon definitions are reusable components of language specifications.

Funcons. A funcon represents a common and reusable computational concept, such as variable as-
signment or looping. It usually corresponds to a simple ingredient of constructs commonly found in
mainstream programming languages. For example, an assignment in a program might be an expression,
returning either the target variable or the assigned value; the funcon for assigning a value to a variable
simply has that effect, and does not return either of its arguments. Loops in programs can often be termi-
nated abruptly by break statements; the funcons for loops simply propagate abrupt termination of their
bodies, and other funcons are used to handle abrupt termination. Funcons for integer operations return
the unbounded mathematical results, leaving it to other funcons to enforce boundedness. Etc.

CBS uses a modular variant of structural operational semantics (MSOS) [13] to define funcons.
Elision of implicitly propagated semantic entities (environments, stores, etc.) ensures conciseness as
well as modularity. Funcons are defined independently of any particular programming language, and
of each other. Adding new funcons to the CBS library does not require any changes at all to previous
definitions.

The intended interpretation of funcon definitions in CBS is based on their translation to MSOS, and
thereby as value-computation transition systems [9]. The translation from a precursor of CBS (MSDF) to
MSOS was originally defined in Prolog [[10]; funcon definitions are currently translated declaratively to
monadic Haskell code [S]], where the monads involved correspond directly to the entities used in MSOS.
The definition of the translation is validated empirically by using generated code to execute funcon terms
(manually-written unit tests, and translations of test programs in languages specified in CBS).

Syntax. CBS includes a variant of BNF context-free grammars, extended with standard notation for
regular expressions; the interpretation of such grammars as datatypes of ASTs is well established. Con-
cise grammars for expression syntax are usually highly ambiguous; CBS allows disambiguation (asso-
ciativity, relative priority, etc., as in SDF3 [20]], [19, Ch. 2]) so the same grammar can be used to specify
both abstract and concrete syntax. Lexical syntax can be context-free (e.g., for nested comments).

Translation functions. The equations used in CBS to specify translations from program ASTs to fun-
cons look like semantic equations in denotational semantics: the left side is an application of a translation
function to an AST pattern, with meta-variables matching sub-trees; the right side is a funcon term con-
taining applications of translation functions to meta-variables. The meta-variables range over specified

P.D. Mosses

sorts of sub-trees. Syntactic desugaring equations relate pairs of (composite) AST patterns. The equa-
tions are interpreted inductively as functions on ASTs, as usual.

Figure|Iillustrates the notation used in CBS for specifying funcons, syntax, and translation functions.
* Top left: Exp is declared as the stem of meta-variables ranging over exp phrases.

* Bottom left: The rules for the translation function rval map ASTs of exp phrases ‘Exp1 && Exp2’
to funcon terms formed from if-else, the translations of Exp1 and Exp2, and false.

* Top right: The signature of the funcon if-true-else implies that its first argument is to be pre-
evaluated; the two rules specify its subsequent reduction to one of its two unevaluated arguments.

Aliases such as if-else support formal abbreviation in funcon terms.

* Bottom right: A SIMPLE program has been parsed and translated to a funcon term.

Language "“SIMPLE"

csinscbs &

=a

»| #2 Expressions

ule
rvalll LExp

ule
rvalll LExp '="

rvalll Expl '
Rule

rvall[Expl '!=' Exp2 1]
Rule

rvalll '!'* Exp 1
Rule
rvalll Expl '&&' Exp2 11

ule
rvalll Expl "||" Exp2 11

Syntax

& coise Fie Gt st earch _projoci_run JEEEET Svotox nte)_Vindow_ i
D T S T

Symtax
NaBL2 Anaiysls

B 4 O oo B T Q=

Shoore 257

Syntax
Exp i exp ii= '(' exp ')*
| value
| lexp
| lexp '=' exp
PP ——
| exp '==' exp
| exp "!=' exp
| '!' exp
| exp '&' exp
| exp "||" exp
Rule
L' Exp *)' 11 : exp = [[Exp]
Semantics
rvalll _:exp 1] : =>values
Rule
rvalll v 11 = valll v 11

11 = assigned(lvalll LExp 11)

Exp 11 = give(

rvalll Exp 11,

sequential(
assign(lvalll LExp 11, given),
given))

[T — be 50
Rute
==' Exp2 1] = is-equal(rvalll Expl 11,rvalll Exp2 11)

not(is-equal(rvalll Expl 11,rvalll Exp2 11))
not(rvalll Exp 11)
if-else(rvalll Expl 11,rvalll Exp2 11,false)

if-else(rvalll Expl 11,true,rvalll Exp2 11)

 Flowingcbs 1

Funcon
if-true-else(_:booleans, _:
Alias
if-else = if-true-else
/*
‘if-true-else(B, X, Y)' evaluates ‘B to
to ‘X" or 'Y', depending on the value of
*/
Rule

1=>T, _1=>T)

if-true-else(true, X, Y) ~> X
Rule
if-true-else(false, X, Y) ~> Y

 Asvarceds.smp 51

function main() {
var al[5];

ale] =
a[1]
al2]
a[3]
al4]

[T
NoE AU

insertion_sort(a);

for (var i = 0; i < sizeOf(a) ; ++i) {
print(alil);

}

function insertion_sort(a) {
for (var i = 1; i < size0f(a); ++i) {
var val_i = alil;
var j = i;
while (j > 0 & val_i < alj-11) {
aljl = alj-11;
j=13-1

aljl = val_i;

=T

a Boolean value, then reduces

Aavarcad et 2
allocate-initialised-variable
(values,
assigned (bound ("i")))),
sequential
(while
(if-else
(is-greater
(assigned (bound ("j")),
decimal-natural ("e")),
is-less
(assigned (bound ("val_i")
assigned (checked index
(integer-add
(1,
integer-subtract
(assigned (bound (
decimal-natural (
vector-elements (assig
false),
sequential
(effect (give
(assigned (checked index
(i?tegerfadd
1

integer-subtract
(assigned (bound ("
decimal-natural ("
vector-elements (assign
sequential

.....)

Figure 1: Using the CBS IDE on SIMPLE [[17, Languages-beta]

3 Definition of the CBS meta-language

This section briefly explains how the syntax and static analysis of CBS are defined [14]]; the meta-
languages used are explained in the Spoofax documentation [22].

Syntax of CBS. We use SDF3 [20] to define the context-free syntax of CBS. SDF3 allows arbitrary
context-free grammars; disambiguation is supported by associativity and relative priority specification
for context-free syntax, and rejections and follow-restrictions for lexical syntax.

The current SDF3 definition of the syntax of CBS is given in [14, CBS/syntax]. Its formal interpreta-
tion is based on the transformation of SDF3 to SDF2 in [22] and the formal definition of SDF2 [21]]. The
syntax definition has been empirically validated for coverage and disambiguation against a collection of
existing specifications written in CBS, using a parser generated from it by Spoofax [22].

4 A component-based formal language workbench

Static analysis of CBS. We currently use NaBL2 [4]] to define name resolution and type checking
for CBS. NaBL2 rules map ASTs to sets of constraints involving scope graphs. The current NaBL2
definition of static analysis for CBS is given in [[14, CBS/trans/static-semantics].

The rules for CBS name resolution require each funcon in the library to have a unique definition.
A language specification can use any defined funcon (without explicit import). Grammar non-terminals,
meta-variable stems, and names of translation functions are local to language specifications; the variables
used in a semantic equation or operational rule are local to it, and checked to be source dependent.

However, NaBL2 is not sufficiently expressive to define the intended type checking of funcon terms
in CBS. Our NaBL2 rules check that applications of funcons are consistent with signatures regarding
number of arguments, and whether arguments may compute undefined results, but not the exact types of
computed values (which involves structural subtyping). The rules also check whether the syntax patterns
used in specifications of translation functions match the specified grammar alternatives. NaBL?2 is to be
superseded by a more powerful meta-language, Statix [3]], which should support full CBS type checking.

4 Generation of the CBS IDE

The IDE for CBS is implemented using Spoofax [22]. As depicted in Figure[2] Spoofax generates the IDE
directly from the definition of CBS: it generates a parser for CBS from its SDF3 grammar (with automatic
error recovery, and syntax highlighting); it generates name resolution and arity checking constraints for
CBS from the NaBL2 rules. Parsing and static analysis errors in specifications are flagged by Eclipse.

CBS-IDE funcons-interpreter PL-to-funcons translator program translation
generation generation generation and execution
Definition of CBS CBS of funcons CBS of PL Program
(SDF3, NaBL2, Stratego) (signatures, rules) (syntax, semantics) (PL)
Spoofax funcons-tools CBS-IDE PL-to-Funcons translator
(Eclipse) (Haskell) (Eclipse) (Eclipse)
CBS-IDE Funcons interpreter CBS of PL Program
(Eclipse) (Haskell) (SDF3, Stratego) (Funcons)
Spoofax Funcons interpreter
(Eclipse) (Haskell)
PL-to-Funcons translator Program execution
(Eclipse) (Haskell)

Figure 2: Generation and use of the CBS IDE

Each language specification in CBS is a separate Eclipse project, with shared access to the funcons
library, which is stored in a remote repository. A language specification can be split into sections, and
stored in any number of files. Multi-file name resolution generates hyperlinks from names to their defi-
nitions.

P.D. Mosses 5

5 Generation of language interpreters from CBS

The generated IDE for CBS has a menu to generate various artefacts when editing a language specifi-
cation written in CBS: a syntax-aware editor to parse programs and translate them to funcons, a list of
reused funcons, and Markdown pages with embedded HTML for hyperlinks and highlighting. When
a language specification is changed, stale generated files are regenerated. When the generated Mark-
down pages are uploaded to GitHub Pages, they create a responsive website (e.g., [17]) where language
specifications and funcon definitions can be browsed using hyperlinks for navigation, as in Spoofax.

The Haskell package funcons-tools [6] can be used as an external tool from the CBS IDE. It generates
highly modular Haskell code for funcon interpreters from CBS definitions of funcons [5].

6 Related work

CBS appears to be the only framework that currently provides a library of reusable components of pro-
gramming language specifications. If the CBS library could be specified in other frameworks, it might
encourage users of those frameworks to exploit funcons, and provide further tool support for CBS users.

The K-framework [[18]] is highly modular, and has been used to specify the semantics of several major
languages. The funcons used in the CBS specification of SIMPLE [17, Languages-beta] have already
been re-specified in K, allowing the CBS of SIMPLE programs to be run with the K tools [[16]. However,
the specification of the K configurations was monolithic, and depended on the set of funcons.

Reduction semantics is a popular form of operational semantics, with mature tool support including
Redex [[12]. Language extensions can be specified smoothly in Redex, but it is unclear how to define an
open-ended collection of funcons: reduction semantics requires grammars for evaluation contexts, and
the evaluation contexts for a particular funcon seem likely to depend on which other funcons are needed.

XASM [1] is a component-based language for Abstract State Machines [8]], supporting the use of
Montages [2] for specifying programming languages. However, it appears that the original home page
(xasm.org) and the subsequent SourceForge project (xasm.sourceforge.net) are no longer in use,
and that no library of reusable XASM components has ever been released.

The Overture F-IDE [11]] supports dialects of the Vienna Development Method (VDM). Those spec-
ification languages contain many constructs which, like funcons, correspond closely to constructs of
high-level programming languages: assignment statements, while-loops, exception-handling, etc. Thus
translating a programming language to a VDM dialect would be similar to specifying its CBS. It could be
interesting to investigate defining an extensible library of funcons in VDM, with IDE support in Overture.

7 Conclusion

The syntax and static semantics of CBS have been formally defined [14] using declarative meta-languages:
SDF3 and NaBL2. The NaBL2 definition of CBS type checking needs to be reformulated in the new
Statix meta-language [3]], to specify rigorous subtype checks, after which the IDE generated from the
definition of CBS is to be released as an Eclipse plugin.

Current examples of language specifications in CBS include OCaml-Light; scaling up to full OCaml
(and other major languages) remains to be demonstrated. Bisimulation properties of funcons can be
proved once and for all [9]; the proofs could be included with the definitions in the library.

The CBS development is part of the PLanCompS project. The project was initially supported by an
EPSRC grant (2011-16), and it is continuing as an open collaboration; new participants are welcome.

http://xasm.org
http://xasm.sourceforge.net

A component-based formal language workbench

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

M. Anlauff (2000): XASM — An Extensible, Component-Based ASM Language. In: ASM 2000, LNCS 1912,
Springer, pp. 69-90, doi:10.1007/3-540-44518-8_6.

M. Anlauff, PW. Kutter & A. Pierantonio (1999): Tool Support for Language Design and Prototyping with
Montages. In: CC’99, LNCS 1575, Springer, pp. 296-299, doii10.1007/978-3-540-49051-7_22.

H. van Antwerpen, C. Bach Poulsen, A. Rouvoet & E. Visser (2018): Scopes As Types. Proc. ACM Program.
Lang. 2, pp. 114:1-114:30, doi:10.1145/3276484.

H. van Antwerpen, P. Néron, A.P. Tolmach et al. (2016): A Constraint Language for Static Semantic Analysis
Based on Scope Graphs. In: Proc. PEPM 2016, ACM, pp. 49—-60, doi:10.1145/2847538.2847543|

L.T. van Binsbergen, P.D. Mosses & N. Sculthorpe (2019): Executable Component-Based Semantics. J. Log.
Algebr. Meth. Program. 103, pp. 184-212, doi:10.1016/j.jlamp.2018.12.004.

L.T. van Binsbergen & N. Sculthorpe (2019): funcons-tools: A Modular Interpreter for Executing Funcons.
Available athttps://hackage.haskell.org/package/funcons-tools. Hackage package.

L.T. van Binsbergen, N. Sculthorpe & P.D. Mosses (2016): Tool Support for Component-Based Semantics.
In: Companion Proc. Modularity 2016, ACM, pp. 811, doi:10.1145/2892664.2893464,

E. Borger (2017): The Abstract State Machines Method for Modular Design and Analysis of Programming
Languages. J. Logic Comput. 27, pp. 417-439, doi:10.1093/logcom/exu077.

M. Churchill & P.D. Mosses (2013): Modular Bisimulation Theory for Computations and Values. In: FOS-
SACS 2013, LNCS 7794, Springer, pp. 97-112, doi:10.1007/978-3-642-37075-5|

M. Churchill, P.D. Mosses, N. Sculthorpe & P. Torrini (2015): Reusable Components of Semantic Specifica-
tions. LNCS Trans. Aspect Oriented Softw. Dev. 12, pp. 132-179, doi:10.1007/978-3-662-46734-3_4.

L.D. Couto, P. Gorm Larsen, M. Hasanagic et al. (2015): Towards Enabling Overture as a Platform for
Formal Notation IDEs. In: F-IDE 2015, EPTCS 187, pp. 14-27, doi;10.4204/EPTCS.187.

C. Klein, J. Clements, C. Dimoulas et al. (2012): Run Your Research: On the Effectiveness of Lightweight
Mechanization. In: POPL 2012, ACM, pp. 285-296, doi:10.1145/2103656.2103691,

P.D. Mosses (2004): Modular Structural Operational Semantics. J. Log. Algebr. Program. 60-61, pp. 195—
228, doi;10.1016/j.jlap.2004.03.008,

PD. Mosses (2019): CBS IDE. Available at https://plancomps.github.io/CBS-beta/docs/
F-IDE-2019/CBS.zip. Language specification project for Spoofax-2.5.7, unreleased prototype.

PD. Mosses (2019): Software Meta-language Engineering and CBS. J. Comput. Lang. 50, pp. 3948,
doi:10.1016/j.jv1c.2018.11.003.

PD. Mosses & F. Vesely (2014): FunKons: Component-Based Semantics in K. In: WRLA 2014, LNCS
8663, Springer, pp. 213-229, doi:10.1007/978-3-319-12904-4_12,

PLanCompS Project (2019): CBS: A Framework for Component-Based Specification of Programming Lan-
guages. Available at https://plancomps.github.io/CBS-beta. Beta release.

G. Rosu (2017): K: A Semantic Framework for Programming Languages and Formal Analysis Tools. In:
Dependable Software Systems Engineering, 10S Press, pp. 186-206, do0i}10.3233/978-1-61499-810-5-186.
L.E. de Souza Amorim (2019): Declarative Syntax Definition for Modern Language Workbenches. Ph.D.
thesis, Delft University of Technology, doii10.4233/uuid:43d7992a-7077-47ba-b38f-113f5011d071.

L.E. de Souza Amorim, E. Visser & G. Wachsmuth (2014): Developing SDF3. In: Parsing@SLE 2014.
Available athttps://www.sleconf.org/2014/parsing-slides/2-sdf3-slides.pdf,

E. Visser (1997): Syntax Definition for Language Prototyping. Ph.D. thesis, University of Amsterdam.

E. Visser, G. Wachsmuth, A.P. Tolmach et al. (2014): A Language Designer’s Workbench: A One-Stop-Shop

for Implementation and Verification of Language Designs. In: Proc. Onward! 2014, ACM, pp. 95-111,
doii10.1145/2661136.2661149. Spoofax home page: https://spoofax.readthedocs.io.

http://dx.doi.org/10.1007/3-540-44518-8_6
http://dx.doi.org/10.1007/978-3-540-49051-7_22
http://dx.doi.org/10.1145/3276484
http://dx.doi.org/10.1145/2847538.2847543
http://dx.doi.org/10.1016/j.jlamp.2018.12.004
https://hackage.haskell.org/package/funcons-tools
http://dx.doi.org/10.1145/2892664.2893464
http://dx.doi.org/10.1093/logcom/exu077
http://dx.doi.org/10.1007/978-3-642-37075-5
http://dx.doi.org/10.1007/978-3-662-46734-3_4
http://dx.doi.org/10.4204/EPTCS.187
http://dx.doi.org/10.1145/2103656.2103691
http://dx.doi.org/10.1016/j.jlap.2004.03.008
https://plancomps.github.io/CBS-beta/docs/F-IDE-2019/CBS.zip
https://plancomps.github.io/CBS-beta/docs/F-IDE-2019/CBS.zip
http://dx.doi.org/10.1016/j.jvlc.2018.11.003
http://dx.doi.org/10.1007/978-3-319-12904-4_12
https://plancomps.github.io/CBS-beta
http://dx.doi.org/10.3233/978-1-61499-810-5-186
http://dx.doi.org/10.4233/uuid:43d7992a-7077-47ba-b38f-113f5011d07f
https://www.sleconf.org/2014/parsing-slides/2-sdf3-slides.pdf
http://dx.doi.org/10.1145/2661136.2661149
https://spoofax.readthedocs.io

	Introduction
	Component-based specification of programming languages
	Definition of the CBS meta-language
	Generation of the CBS IDE
	Generation of language interpreters from CBS
	Related work
	Conclusion

