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Abstract.  In Switzerland direct subsidies are paid to farms for sustainable agricultural practice. The 
cultivable agricultural area layer (German: Landwirtschaftliche Nutzfläche, LN) serves as an annual basis for 
the calculation of these contributions at the Swiss cantonal agricultural offices. Material deposits like silage bale 
stacks are usually excluded from the LN. Therefore, the canton of Thurgau could profit from a spatial vector 
layer indicating locations and area consumption extent of silage bale stacks intersecting with the LN perimeter. 

To ease the monitoring process, we propose a Mask-RCNN based prototypical Deep Learning framework which 
was trained on 10cm SWISSIMAGE orthophoto datasets (swisstopo, Bern). Embedded in an efficient python-
based geodata workflow the model boasts a high F1-Score of 92% on evaluation data. This approach allows 
robust and accurate inference detections over the whole cantonal area. Having the silage bale stack detections 
at hand reduces the manual workload of the responsible official by directing the eyes to the relevant hotspots.  
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1 Introduction 

Switzerland's direct payment system is the basis for sustainable, market-oriented agriculture. The federal 
government supports local farms in the form of various types of subsidies such as biodiversity contributions, 
landscape quality contributions, or food supply security contributions. 
 
Subsidies are often calculated by area and the agricultural offices of the respective cantonal administration are 
responsible for monitoring agricultural areas in order to approve the requested amounts. Only certain land 
usage profiles are eligible for subsidies payment. The cultivable agricultural area layer (German: 
Landwirtschaftliche Nutzfläche, LN) is a GIS product maintained by the cantonal agricultural offices and 
serves as the key calculation index for the receipt of contributions. 
 
Major adjustments of the LN are part of the periodic update (German: Periodische Nachführung, PNF) which 
is carried out within the framework of the official cadastral survey (German: Amtliche Vermessung, AV) 
[1][2], while smaller updates are performed annually. Its correct determination is of immense importance, 
because if the LN vector polygons derived from the cadastral survey data deviate largely from the actual 
conditions on site, the monitoring effort during the annual farm structure data survey process (German:  
Betriebsstrukturdatenerhebung) [10][11] increases.  
 
Farm areas that are not usable for effective productive agriculture are to be excluded from the LN. This includes 
material deposits such as silage hay bales storage plots which are constantly changing due to the high degree 
of mechanization in agriculture and can sometimes fall within the perimeter of the registered LN. The tracking 
of these areas with conventional surveying such as repeated field visits or the visual interpretation of current 
aerial imagery proves to be very time-consuming and costly. Therefore we propose an automatized workflow 
to predict areas currently in use for silage bale stack deposits. 
 
Artificial convolutional neural networks (CNN) based on deep learning (DL) have been used for automated 
detection and classification of image features for quite some time. Reliable detection from aerial imagery using 
applications of DL would enable cost-effective detection of these storage areas and provide added value to 
agricultural office of the Canton of Thurgau (German: Landwirtschaftsamt, LWA) but also in other cantons.  
 
In the context of the publicly financed project “Swiss Territorial Data Lab” the applicability of CNNs to 
generate a localized silage bale stack inventory was investigated. The delivered dataset should consist of vector 
polygons which are compatible with the LWA’s webGIS workflow and should be made available together with 



new acquisitions of aerial imaging campaigns. This project therefore aims at the development of an efficient 
and flexible algorithm which offers a highly accurate performance and can be quickly deployed over the 
complete cantonal area of Thurgau (approx. 992 km²). For the LWA it is important that the detections are 
precise, relevant in size, and do not contain a large number of false positives. 

2 Method 

2.1 Overview 

Silage bale stacks as target objects are clearly visible on the newest 2019 RGB layer of the 10cm 
SWISSIMAGE dataset [15]. A few hundred of each of these objects were manually digitized as vector 
polygons (“annotations”) with QGIS [14] in separate workflows using a semi-automatic approach. 
 
In order to limit computational load, the current LN extent of the canton of Thurgau was defined as Area of 
Interest (AoI) and tiled into smaller quadratic images (tiles). Those tiles containing an intersecting overlap with 
a annotation were subsequently presented to a neural object detection network for training in a process known 
as Transfer Learning. A random portion of the dataset was kept aside from the training process in order to 
allow an unbiased evaluation of the detector performance. 
 
Multiple iterations were performed in order to find out near-optimal input parameters such as tile size, zoom 
level, or network- and training-specific variables termed «hyperparameters» for each of the above-mentioned 
target objects. All detector models were evaluated for their prediction performance on the reserved test dataset. 
For each target object the best model was chosen by means of its overall performance measured by maximizing 
the F1-Score [4] on an independent reserved evaluation dataset. This model was used in turn to perform a 
prediction operation («Inference») on all tiles comprising the AoI – thereby detecting the target objects over 
the whole canton of Thurgau. 
 
Postprocessing included filtering the resulting polygons by a high confidence score threshold provided by the 
detector for each detection in order to reduce the risk of false positive results (misidentification of an object as 
a silage bale stack). Subsequently adjacent polygons on separate tiles were merged by standard vector 
operations. A spatial intersection with the known LN layer was performed to identify the specific areas 
occupied by the objects which should not receive contributions but potentially did in last year’s rolling payout. 
Only intersections covering more than 50m2 of LN area are considered «relevant» for the final delivery. For 
completeness, all LN-intersecting polygons of detections covering at least 20m2 are included in the final 
delivery. Filtering can be undertaken easily on the end user side by sorting the features with along a 
precalculated area column. 

2.2 Aerial Imagery 

The prototypical implementation uses the publicly available SWISSIMAGE dataset of the Swiss Federal Office 
of Topography swisstopo [15]. It was last flown for Thurgau in spring 2019 and offers a maximum spatial 
resolution of 10cm Ground Sampling Distance (GSD) at 3-year intervals. As the direct subsidies are paid out 
yearly the periodicity of SWISSIMAGE in theory is insufficient for annual use. The challenge of low aerial 
image frequency remains for manual and automatic methods alike. In this case the high-quality imagery on the 
one hand can serve as a proof of concept though. On the other hand, the cantons have the option to order own 
flight campaigns or satellite data to increase the periodicity of available aerial imagery if sufficient need can 
be shown from several relevant administrative stakeholders.  
 
For our approach aerial images need to be downloaded as small quadratic subsamples of the orthomosaic called 
tiles to be used in the DL process. The used tiling grid system follows the “Slippy Map” standard [12] with an 
edge length of 256 pixels and a zoom level system which is derived from a quadratic division tree on a 
Mercator-projected world map. The whole world equals zoom level = 0 with a GSD at equator ~156 km/px, a 
zoom level = 18 in this system would approximate to a GSD of ~60 cm/px. 

https://www.swisstopo.admin.ch/en/geodata/images/ortho/swissimage10.html
https://www.qgis.org/en/site/


2.3 Dataset: Silage Bale Stacks 

Silage hay bales are one of several features of interest specifically excluded from the subsidized cultivable LN 
area. These bales are processed, and compacted fermenting grass cuttings wrapped in plastic foil. They often 
roughly measure 1 - 2 cubic meters in volume and are weighed in at around 900kg. They are mainly used as 
animal food during winter when no fresh hay is available. Farmers are required by regulation to compactly 
stack them in regular piles at few locations rather than scattered collections consuming large areas.  
 
As no conducive vector dataset for silage bale locations exists in Thurgau, the annotations for this use case had 
to be created manually. A specific labeling strategy to obtain such a dataset was therefore implemented (see 
Fig. 1). Using SWISSIMAGE as a WMS bound basemap in QGIS, a few rural areas throughout the canton of 
Thurgau were selected and initially approximately 200 stacks of silage bales were manually digitized as 
polygons. Clearly disjunct stacks were digitized as two separate polygons. For partially visible stacks only 
visible parts were included. Loose collections of bales were connected into one common polygon if the 
distances between the single bales were not exceeding the diameter of a single bale. Ground imprints where 
silage bales were previously stored were not included. Also shadows on the ground were not part of the 
polygon. Plastic membrane rests were not included unless they seemed to cover additional bales. Most bales 
were of circular shape with an approximate diameter of 1.2 – 1.5 m, but also smaller rectangular ones were 
common. Colors ranged from mostly white or green tinted over still common dark green or grey to also more 
exotic variants such as pink, light blue and yellow (the latter three are related to a specific cancer awareness 
program) [18]. 
 

 
Fig. 1. Example of the annotation rules (left), example photo of Swiss silage bales (right)[16]. 

 
With these initial 200 annotations a preliminary detector was trained on a relatively high zoom level (18, 60cm 
GSD, tiling grid at about 150m) and predictions were generated over the whole cantonal area (See section 
«Training» for details). Subsequently, the 300 highest scoring new predictions (all above 99.5%) were checked 
visually in QGIS, precisely corrected, and then transferred into the training dataset. All tiles containing labels 
were checked visually again at full zoom and missing labels were created manually. The resulting annotation 
dataset consists of approximately 700 silage bale stacks. 

2.4 Deep Learning 

DL was performed with the Swiss Territorial Data Lab’s Object Detection Framework [3]. The technology is 
based on a Mask RCNN architecture [6], an extension of Fast R-CNN [5], implemented with the High-Level 
API Detectron2 [17] leveraging the Deep Learning framework PyTorch [13]. Parallelization is achieved with 
CUDA-enabled GPUs on the High-Performance Computing cluster at the FHNW server facility in Muttenz. 
The Mask RCNN Backbone is formed by a 50 layer deep residual neural network (ResNet-50) [7] 
implementation and is accompanied by a Feature Pyramid Network (FPN) [8]. This combination of code 
elements results in a neural network leveraging more than 40 Mio. parameters. The model weights are obtained 
pretrained on the COCO dataset [9] and are modified through transfer learning. The model accepts three 
channel images and feature regions represented by pixel masks superimposing the imagery in the shape of the 
target object vector polygons.  
 
Training is performed iteratively by presenting subsets of the tiled dataset to modify the edge weights in the 
network graph. Input images are not augmented as RGB aerial imagery relies on consistent northing and 
shadow angles. Progress is measured step-by-step through statistically minimizing the loss functions. The 
process is aborted if validation loss is not decreasing further after each 250 step iterations. Typically, less than 
10 000 step iterations are sufficient to reach this point. Only tiles containing masks (labels) can be trained. Two 



smaller subsets of all labeled tiles are reserved from the training set (TRN), so a total of 70% of the trainable 
tiles are presented to the network for loss minimization. The validation set (VAL, 15%) and the test set (TST, 
15%) are pseudo-randomly distributed and statistically independent from the TRN set. The VAL set is used to 
perform recurrent evaluation during training. Training can be stopped if the loss function on the validation set 
has reached a minimum since after that point further training would push the model into an overfitting scenario. 
The TST set serves as an unbiased reserve to evaluate the detector performance on previously unseen data. 
Tiles not containing a label yet were classified into a separate class called “other” (OTH, see Fig. 2). This 
dataset was only used for generating predictions (inference). 
 

 
Fig. 2. Dataset Split – Grey tiles are only used in prediction (OTH); they do not contain any labels during training. The 

colourful tiles contain labels, but are scattered relatively sparsely. Red tiles are used for training the model weights 
(TRN); green tiles validate the learning progress during training to avoid overfitting (VAL) and blue tiles are reserved for 

unbiased post-training evaluation (TST). 
 

Multiple training runs were performed separately to manually optimize the network-specific hyperparameters 
such as batch size, learning rate or momentum. Also, multiple zoom levels (spatial resolution, quadratic 
subdivision of tiles, see Fig. 2) were tested as a hyper-parameter variable in this manner. Learning rate was 
scheduled over the iterations using the “WarmupMultiStepLR” system. 

2.5 Prediction and Assessment 

For the TRN, VAL and TST subset, confusion matrix counts, and classification metrics calculations can be 
performed since they offer a comparison with the digitized «ground truth» reference. For all subsets (including 
the rest of the cantonal LN as OTH), predictions are generated as vectors covering those areas of a tile that the 
detector algorithm identifies as target objects and therefore a confidence score is attributed. In case of the tiles 
containing annotation polygons, the overlap between the predictions and the labels can be checked. Is any 
overlap found between a label and a prediction this detection is considered a true positive (TP). If the detector 
missed a label entirely this label can be considered as false negative (FN). Did the detector predict a target 
object that was not present in the labelled data it is considered false positive (FP). On the unlabeled OTH tiles, 
inference predictions cannot be checked against reference data. 
 
The counting of TPs, FPs and FNs on the TST subset allows the calculation of standard metrics such as 
precision (user accuracy), recall (producer accuracy) and F1 score (as a common overall performance metric 
calculated as the harmonic mean of precision and recall) [4]. The counts, as well as the metrics can be plotted 
as function of the minimum confidence score threshold which can be set to an acceptable filter percentage for 
a certain detection task. A low threshold should generally yield fewer FN errors, while a high threshold should 
yield fewer FP detections. The best performing model by means of maximum F1 score was used to perform a 
prediction run over all tiles intersecting with the cantonal LN surface area.  
  



2.6 Post-Processing 

In order to obtain a consistent result dataset, detections need to be postprocessed. Firstly, the confidence score 
threshold operation is applied. Here, a comparatively high threshold can be used for this operation. «Missing» 
a detection of a target object (FN) is not as costly for the analysis of the resulting dataset at the agricultural 
office as analyzing large numbers of FP detections would be. Also missing single individual small target objects 
is much less problematic than missing whole large areas. These larger areas are typically attributed with higher 
confidence scores though and are therefore less likely to be missed. 
 
In some cases, silage bale stacks can cross the tiling grid and are therefore detected on multiple images. This 
results in edge artefacts along the tile boundaries intersecting detections that should be unified. For this reason, 
adjacent polygons need to be merged into a single polygon. This is achieved by first buffering all detections 
with a 1.5m radius (roughly the radius of a single typical bale). Then all touching polygons are dissolved into 
single features. Afterwards, negative buffering with -1.5m radius is applied to restore the original boundary 
(see Fig. 3).  
 

 
Fig. 3: Example of silage bale detection polygons (red) from raw detections (yellow) dissolved because they are crossing 

the tile boundary (light blue). 
 

This process also leads to an edge smoothing of the pixel step derived vector boundary into curves containing 
a high number of vertices. A simplification operation reducing the number of vertices can be performed without 
the loss of relevant spatial accuracy. For all remaining detection polygons, the confidence score is reattributed 
as a merged area-weighted average of the input values. With a threshold operation on the resulting area all 
target objects with an area cover below 20 m2 are filtered out of the dataset to provide only economically 
relevant detections. 
 
  



3 Results 

Silage Bale Stacks as a target object generally resulted in successful and robust models achieving high 
prediction performance. The detections were considered deliverable to the LWA. 
 

Tab 1: Performance of silage bale detector models at several zoom levels evaluated by maximum F1-Score. 
 

 Zoom Level 
16 

Zoom Level 
17 

Zoom Level 
18 

Zoom Level 
19 

Zoom Level 
20 

GSD ~ 240 cm/px ~ 120 cm/px ~ 60 cm/px ~ 30 cm/px ~ 15 cm/px 
# Tiles Trained ~ 600 ~ 1 000 ~ 1 600 ~ 3 000  ~ 5 000 
# Tiles Inference ~ 8 000 ~ 25 000 ~ 84 000 ~ 310 000 ~ 1 310 000 
Duration of Run ~ 0.6 h ~ 2 h  ~ 4 h ~ 15 h ~ 100 h 
TST Max F1 RGB 52.5 % 74.7 % 87.2 % 92.3 % 90.9 % 

 
The model trained with tiles at zoom level 19 (every pixel approx. 30cm GSD) showed the highest performance 
with a maximum F1 Score of 92.3% (see Tab. 1). Increasing the resolution even further by using 15 cm/px 
GSD did not result in a gain in overall detection performance while drastically increasing storage needs and 
computational load. The detector model at zoom level 19 is performing very well on the independent TST 
dataset detecting the largest portion of silage bale stacks at any given confidence threshold. The number of FP 
reaches very low counts towards the higher end of the threshold percentage, increasing precision while 
decreasing recall (see Fig. 4). 
 

 
Fig. 4: Performance metrics of the Zoom Level 19 model on the TST dataset as a function of the minimum confidence 

score threshold. 
 
For delivery of the dataset a detector was subsequently used at a threshold of 96% minimizing FP errors 
resulting in a conscious bias on precision, see Fig. 4 and 5. At this value 809 silage bale stacks were 
rediscovered in the TRN, TST and VAL subset. Just 10 FP detections were found in these subsets. 97 silage 
bale stacks were not rediscovered (FN). The model precision (user accuracy) on the TST set was found to reach 
approx. 98% and the recall (hit rate, producer accuracy) was acceptable at approx. 85%.  
In the applied inference run the model detected a total of 2 473 additional silage bale stacks after post-
processing over the rest of the LN area of the canton of Thurgau (OTH subset), of which 288 stacks cover more 
than 20 m2 and were prepared for delivery. The relevant total intersection area of the final vector polygon 
dataset with the LN layer amounts to approx. 8 000 m2. 



 
Fig. 5: Raw inference detections (yellow) of silage bale stacks displaying very high confidence scores 

outside of the TRN/VAL/TST subsets. 

4 Conclusion 

The agricultural office describes the detections of silage bales as very accurate with only a small percentage of 
actual FP detections. Clearly delineated objects such as silage bales are generally less demanding to detect than 
more complex target objects. The high F1 score surpassing 90% suggests a productively usable result. 
Especially larger stacks are detected with very high confidence scores and can be targeted first by area-filtering 
in the monitoring process. The Mask-RCNN approach proved to be a viable deep learning kernel architecture.  
 
The highest zoom level 20 (15cm GSD) requires enormous computational resources especially for the 
prediction run while performing suboptimal on evaluation metrics. Hence, RGB winter imagery resampled 
from SWISSIMAGE at a resolution of 30cm GSD proved to be sufficient in resolution and quality while still 
maintaining a reasonable effort on computational resources for inference runs over the complete cantonal 
agricultural surface.  
 
Very few false positive samples such as animal shelters, material deposits or white-colored vehicles remained 
in the final prediction dataset. Options to automatically tackle this challenge in the future include new models 
distinguishing multiple classes, the choice of larger (higher parametric) model architectures, larger training 
datasets or a revised and improved post-processing workflow. 
 
On an economical scale the extra effort for the LWA resulting from misplaced silage bale stacks in the LN 
areas is not negligible but also not extremely critical. In the scope of this study, silage bale stacks did serve as 
an accessible initial proof of concept regarding the usability of the detector. The new detections allow the 
professionals at the agricultural office to direct their eyes more quickly at relevant hotspots and spare them 
some aspects of the long and tedious manual search on aerial imagery that was performed in the past.  
 
For the future, extending the range of target objects to larger and more complex areas such as complete farm 
yards or land usage patterns such as grazed pastures on steep slopes could provide strong additional benefits 
for the monitoring process at the agricultural office. 
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