
EasyChair Preprint

№ 110

Task Interruption in Software Development

Projects: What Makes some Interruptions More

Disruptive than Others?

Zahra Shakeri Hossein Abad, Oliver Karras, Kurt Schneider,
Ken Barker and Mike Bauer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 1, 2018

Task Interruption in So�ware Development Projects
What Makes some Interruptions More Disruptive than Others?

Zahra Shakeri Hossein Abad,
Ken Barker

University of Calgary, Canada
{zshakeri,kbarker}@ucalgary.ca

Oliver Karras, Kurt Schneider
Company Name,

{oliver.karras,kurt.schneider}@inf.
uni-hannover.den

Mike Bauer
Arcurve Inc.

Calgary, Canada
mike.bauer@arcurve.com

ABSTRACT
Multitasking has always been an inherent part of so�ware devel-
opment and is known as the primary source of interruptions due
to task switching in so�ware development teams. Developing so�-
ware involves a mix of analytical and creative work, and requires
a signi�cant load on brain functions, such as working memory
and decision making. �us, task switching in the context of so�-
ware development imposes a cognitive load that causes so�ware
developers to lose focus and concentration while working thereby
taking a toll on productivity. To investigate the disruptiveness of
task switching and interruptions in so�ware development projects,
and to understand the reasons for and perceptions of the disrup-
tiveness of task switching we used a mixed-methods approach
including a longitudinal data analysis on 4,910 recorded tasks of
17 professional so�ware developers, and a survey of 132 so�ware
developers. We found that, compared to task-speci�c factors (e.g.
priority, level, and temporal stage), contextual factors such as in-
terruption type (e.g. self/external), time of day, and task type and
context are a more potent determinant of task switching disrup-
tiveness in so�ware development tasks. Furthermore, while most
survey respondents believe external interruptions are more disrup-
tive than self-interruptions, the results of our retrospective analysis
reveals otherwise. We found that self-interruptions (i.e. voluntary
task switchings) are more disruptive than external interruptions
and have a negative e�ect on the performance of the interrupted
tasks. Finally, we use the results of both studies to provide a set
of comparative vulnerability and interaction pa�erns which can
be used as a mean to guide decision-making and forecasting the
consequences of task switching in so�ware development teams.

KEYWORDS
Multitasking, Task switching, Task interruption, Productivity, Ret-
rospective analysis, Empirical study

1 INTRODUCTION
So�ware development has undergone signi�cant changes over the
past decade. Traditionally siloed development teams are more col-
laborative and included more stakeholders from more disciplines
than ever before. �e need for faster-time-to-market, frequent re-
leases, continuous integration, and continuous delivery has made
frequent task switching an unavoidable part of so�ware develop-
ment projects. Task switching, commonly referred to as multitask-
ing [37] and interruption [31] is the act of starting one task and
moving to another before �nishing the �rst. Developers o�en have
to switch tasks for various reasons: ge�ing sidetracked to other
tasks; ge�ing stuck or bored by complex or lengthy repetitive tasks;

receiving priority change requests from the management team; or
even something as simple as a question from a co-worker. In a
recent study of interruptions Parnin and Rugaber [29] analyzed
development logs of 10,000 programming sessions from 86 pro-
grammers and found that in a typical day, a developer’s work is
fragmented into many short sessions (i.e 15-30 minutes), and a pro-
grammer o�en spends a signi�cant amount of time (i.e. 15-30 min-
utes) reconstructing working context before resuming interrupted
tasks. To gain a be�er grasp of the behaviour of task switching in
so�ware development projects we conducted an investigation of
44,515 tasks (recorded between 2013 and 2017) of 23 professional
so�ware developers at SET GmbH 1, a leading provider of stan-
dard so�ware for output management 2. We found that developers
switch about two-thirds (59%) of their daily tasks from which 40%
require context switching, and they never resume 29% of their in-
terrupted/switched tasks. While task switching in some cases help
developers be more productive, it imposes a cognitive load on them:
frequent task switching typically results in severe performance
costs by increasing response latencies and error rates [14, 37], and
can cause an initial decrease in how quickly people perform post-
switching tasks [20].

Research into developers’ productivity and multitasking pro-
vide evidence on how multitasking and interruptions can impact
productivity in so�ware development teams [21, 23, 37]. How-
ever, very li�le work [28, 29] has investigated the factors that can
make task switching more disruptive for di�erent types of so�-
ware development tasks (e.g. programming, test, architecture, UI,
and deployment). Given the paucity of empirical studies on the
disruptiveness of task switching and interruption in so�ware de-
velopment projects, it remains unclear what factors make which
types of task interruptions more disruptive than others. �is paper
reports on a mixed-methods study exploring and analyzing factors
in�uencing the vulnerability of various types of so�ware develop-
ment tasks to interruptions. A multivariate longitudinal analysis
was conducted to investigate disruptive factors, such as the inter-
ruption type (i.e. self/external), context switching, and interruption
timing (i.e. daytime, task stage), and to then perform comparative
and cross-factor analysis on the vulnerability of various so�ware
development tasks based on these factors. Further, a survey of 132
professional so�ware developers from di�erent organizations (e.g.
Microso�, Tableau So�ware, Ericsson, Bosch, and Cisco) explored
practitioners’ perceptions of and reasons for task switching and
the disruptiveness of these interruptions.

1h�ps://www.set.de
2�is analysis has been conducted to justify our research goals and it is di�erent from
the main longitudinal experiment of this paper

EASE’18, June’18, Christchurch, New Zealand Zahra Shakeri Hossein Abad, Ken Barker, Oliver Karras, Kurt Schneider, and Mike Bauer

�ese studies show that context switching (e.g. task type and
project), the abstraction level (i.e. main task, sub-task) and the tem-
poral stage (i.e. early, late) of the interrupted task, and the interrup-
tion type (i.e. self, external) signi�cantly impact the disruptiveness
of interruptions and task switching in so�ware development tasks.
In summary, this paper makes the following contributions:
• It models interruption characteristics and presents a longitu-

dinal analysis of 4,910 task logs of 17 professional so�ware
developers to study the vulnerability of various development
tasks to interruptions and to explore the disruptive impact of
interruption characteristics on di�erent tasks’ types.

• It presents a survey of 132 professional so�ware developers
to identify their perceptions of the concept and impact of task
switching and interruptions in so�ware development projects.

• It provides a set of comparative disruptiveness as well as
cross-factor interaction pa�erns that can be used to guide
task switching and to predict and manage the cognitive load
associated with various interruptions.

2 BACKGROUND
�is section �rst describes concepts related to task switching and in-
terruption. We formulate the dependent and independent variables
of this study and conclude this section by reviewing the related
work on interruption analysis in so�ware engineering.

2.1 Terms and Concepts
�e information required to accomplish a task decays gradually in
human memory, which results in a mental clu�er of goals/tasks.
Problem state, the main source of interference in multitasking envi-
ronments, keeps track of task related information that is not readily
available in the external environment [31] or in the information
associated with performing a task. Some tasks are reactive (e.g.
answering an email or phone calls) and do not need to maintain a
problem state. Some tasks may utilize the problem state resource
but do not need to maintain the information therein (e.g. stand-up
meetings). As interference only arises when the problem state re-
source is needed by two or more tasks, tasks that do not require
problem state information will not experience interference on the
problem state resource. �us, we do not consider reactive tasks and
tasks that do not need to maintain their problem state as task inter-
ruption. Instead, we refer to this type of task switching as no-task
interruptions. Activation (Λ) or the momentary availability of the
memory content controls the speed and reliability of access to the
memory content a�er resuming a task [6]. As activation grows
the information can be retrieved in a shorter amount of time [31].
�e time course of tasks activation in a sequential multitasking
set-up is illustrated in Figure 1. �e abscissa represents the time and
the ordinate represents the activation level. �e dashed line repre-
sents the Interference level (τ) (or activation threshold) and refers
to the expected (mean) activation of the most interrupting task [5].
Activation distance (γ) represents the accuracy of memory for the
current task and refers to the amount by which the resumed task at
its peak is more active than the interference level. �e memory-of-
goals theory [5] shows that the interference level depends on the
number of interrupting tasks (nested interruptions) and the long-
term durability (i.e. strength) of the information associated with

Ac
tiv
at
io
n

Time
Primary Task Secondary Task

ᵧ1 ᵧ2
Interference level ()

Figure 1: Goal activations in nested interruptions [adapted
from Memory of Goals theory]. When γ = 0 the probability
of recall is %50.

these tasks. �e more they are, or the stronger they are, the more
they interfere with the target [5], which contributes to a decrease
in memory accuracy. For example, as illustrated in Figure 1, the
memory accuracy decreases as the number of interrupting tasks
increases (γ2 < γ1). �e ACT-R theory computes the activation as a
function of frequency of use (i.e. Λ = ln

(n√
T

)
), where n is the total

number of times the memory item has been retrieved in its lifetime,
and T is the length of this lifetime. ACT-R formulates the prob-
ability of recall as an exponential function of activation distance
(i.e. Pr ecall =

1
1+e−γ /s). �us, as time passes without using an

item,T for that item grows, whereas n does not, producing decay (a
decrease in activation). Given that activation (Λ) decreases by time
and the activation threshold (τ) (or the interference level) increases
by the length of the interruptions and the number of distractors,
we can conclude that the probability of recall decreases as a power
function of time and the number of distractors [7]. �us, in this
paper, we study the vulnerability of so�ware development tasks
by exploring the impact of various interruption characteristics on
these two dependent variables: (1) suspension length [∆], and
(2) the number of nested interruptions [|w |]. Figure 2 presents
the eight independent (ıν1−8) variables of this study, the way we
interpreted them in the course of our data analysis, their data col-
lection method, as well as their corresponding literature references.

2.2 Related Work
Characterizing, managing, and theorizing multitasking and task
switching have received increasing research a�ention from di�er-
ent disciplines such as psychology [5, 31, 32], human-computer
interaction [19, 20, 30], and management [27]. In addition to the
related work discussed in Section 2.1, we focus on research related
to multitasking and interruptions in the area of so�ware engineer-
ing. Looking at multitasking and productivity, Vasilescu et al. [37]
developed models and methods to measure the rate and breadth
of developer’s context-switching behaviour and studied how the
switching behaviour a�ects developers’ productivity. �ey found
that a high rate of project switching per day results in a lower
productivity, and developers who are involved in several projects
generate more output than others. Similarly, Meyer et al. [24]
conducted two studies to investigate so�ware developers’ personal
perception of productivity and the factors which impact this produc-
tivity. �e results of both studies revealed that developers perceive
their day as productive when they complete many or big tasks
without interruptions or context switches. However, they observed
that participants performed signi�cant task and activity switching
while still feeling productive. In a follow-up study, Meyer et al. [22]
found work habits and perceived productivity are related with each

Task Interruption in So�ware Development Projects EASE’18, June’18, Christchurch, New Zealand

Primary Task (pi)

Secondary Task

Interruption point
Recall

Interruption Type

(sj)

Primary Task

Resumption Point

Task Interruption in Software Development Projects Conference’17, July 2017, Washington, DC, USA

Primary Task

Primary Task

Primary Task

(pi)

Secondary Task

Task's Work Load
Primary Task's Complexity

Primary Task's Type

Experience level
Interruption length

Secondary Task's Complexity

Secondary Task's Type

Interruption Type (Self, External) Interruption point
Recall

Interruption Type

(sj)

Primary Task

Figure 3: Goal activations in nested interruptions
[adapted from Memory of Goals theory].

vulnerability to interruption, but simple enough not to cause
participants to despair of performing well. Through testing
with pilot participants, it was discovered that all subtasks
per trial were appropriate.
.⌦
Mental Workload (MW), [high, low], Eye-tracking

↵

.⌦Primary Task’s Complexity (PTC), [high, low], [TLX, Predefined]
↵

.⌦Secondary Task’s Complexity (STC), [high, low], [TLX, Predefined]
↵

.⌦Primary Task’s Type (PTT), [RE, Dev, Test], Predefined
↵

.⌦Secondary Task’s Type (STT), [RE, Dev, Test, others], Predefined
↵

.⌦Experience Level (EL), [1m � 3y], Questionnaire
↵

.⌦Context Switching(CS), [yes, no], Predefined
↵

.⌦Interruption Length (IL), [1min � 1hr], Context-dependent
↵

.⌦Interruption Type (IT), [self, external], Context-dependent
↵

4.5 Experimental Procedure

4.6 Data Cleaning and Preparation

Our diary study involved five data-collection activities: (1)
A daily log of the tasks assigned to the participants, (2) the
application of eye tracking tool for measuring the cognitive
load, (3) daily debriefing questionnaire, (4) an interview
following the one-week diary period, and (5) task-based TLX
questionnaire for measuring the general workload of each
task.

The time during which the daily log was kept was limited
to the participants working hours. What a participant did
during his or her time away from the job will not be in the
scope of this study. Also, minimizing invasion of privacy
will help us achieve a good working relationship with the
participants. Figure ?? represents an overall overview of the
tools and tasks which will be involved in this study.

Since eye-tracking data is inherently noisy, which is mainly
due to the blinking and tracking errors, a smoothing filter
must be applied on the data before it can be analyzed.

4.7 Results

4.8 Threats to Validity

Diary studies can introduce some threats to validity. First,
it is impossible to ensure that participants write their diary

entries in an unfiltered way. Second, diary studies follow
a case-study approach. In the diary study, we aimed for
in-depth understanding, rather than statistical validity. We
read students entries consistently, and frequently requested
additional information or explanation, which should have
counteracted any withholding. Also regarding diaries, we
acknowledge that there was no way to ensure that participants
from both groups received equivalent feedback on their diaries.
To reduce this possible threat, the researchers visited the
diaries on a daily basis, posting comments to on all diaries
that changed since the prior visit.

Another potential threat to our results is the data sub-
jectivity of the qualitative diary analysis. We grounded our
findings in the data collected and presented excerpts to miti-
gate this threat.

Participants were compensated $30 for their participation
in this study.

5 STUDY 3: USER SURVEY

To garner additional qualitative insights into developers’ per-
ception of task switching and interruptions, we conducted a
survey.

5.1 Participants and Methods

We sent an online survey to 700 professional software devel-
opers.

5.2 Results

5.3 Threats to Validity

Get if from perception productivity paper.

6 DISCUSSION

6.1 Interruption Finite State Machine

We propose a simple Final State Automata (FSA) which aids
to explain and characterize various types of interruptions.

6.2 Research and Practical Implications

7 CONCLUSION

REFERENCES
[1] Zahra Shakeri Hossein Abad, , Guenther Ruhe, and Mike Bauer.

2017. Task Interruptions in Requirements Engineering: Reality
versus Perceptions!. In Requirements Engineering Conference
(RE), 2017 IEEE 25th International. IEEE, 6–15.

[2] Zahra Shakeri Hossein Abad, Guenther Ruhe, and Mike Bauer.
2017. Understanding Task Interruptions in Service Oriented Soft-
ware Development Projects: An Exploratory Study. In Proceed-
ings of the 4th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP ’17). IEEE Press,
34–40.

[3] Erik M Altmann and J Gregory Trafton. 2002. Memory for Goals:
An Activation-based Model. Cognitive science 26, 1 (2002),
39–83.

[4] John R Anderson. 1990. Cognitive Psychology and Its Implica-
tions. WH Freeman/Times Books/Henry Holt & Co.

[5] John R Anderson and Christian J Lebiere. 2014. The Atomic
Components of Thought. Psychology Press.

[6] Sandra G Hart and Lowell E Staveland. 1988. Development
of NASA-TLX (Task Load Index): Results of Empirical and
Theoretical Research. Advances in psychology 52 (1988), 139–
183.

Task Interruption in Software Development Projects Conference’17, July 2017, Washington, DC, USA

Primary Task

Primary Task

Primary Task

(pi)

Secondary Task

Task's Work Load
Primary Task's Complexity

Primary Task's Type

Experience level
Interruption length

Secondary Task's Complexity

Secondary Task's Type

Interruption Type (Self, External) Interruption point
Recall

Interruption Type

(sj)

Primary Task

Figure 3: Goal activations in nested interruptions
[adapted from Memory of Goals theory].

vulnerability to interruption, but simple enough not to cause
participants to despair of performing well. Through testing
with pilot participants, it was discovered that all subtasks
per trial were appropriate.
.⌦
Mental Workload (MW), [high, low], Eye-tracking

↵

.⌦Primary Task’s Complexity (PTC), [high, low], [TLX, Predefined]
↵

.⌦Secondary Task’s Complexity (STC), [high, low], [TLX, Predefined]
↵

.⌦Primary Task’s Type (PTT), [RE, Dev, Test], Predefined
↵

.⌦Secondary Task’s Type (STT), [RE, Dev, Test, others], Predefined
↵

.⌦Experience Level (EL), [1m � 3y], Questionnaire
↵

.⌦Context Switching(CS), [yes, no], Predefined
↵

.⌦Interruption Length (IL), [1min � 1hr], Context-dependent
↵

.⌦Interruption Type (IT), [self, external], Context-dependent
↵

4.5 Experimental Procedure

4.6 Data Cleaning and Preparation

Our diary study involved five data-collection activities: (1)
A daily log of the tasks assigned to the participants, (2) the
application of eye tracking tool for measuring the cognitive
load, (3) daily debriefing questionnaire, (4) an interview
following the one-week diary period, and (5) task-based TLX
questionnaire for measuring the general workload of each
task.

The time during which the daily log was kept was limited
to the participants working hours. What a participant did
during his or her time away from the job will not be in the
scope of this study. Also, minimizing invasion of privacy
will help us achieve a good working relationship with the
participants. Figure ?? represents an overall overview of the
tools and tasks which will be involved in this study.

Since eye-tracking data is inherently noisy, which is mainly
due to the blinking and tracking errors, a smoothing filter
must be applied on the data before it can be analyzed.

4.7 Results

4.8 Threats to Validity

Diary studies can introduce some threats to validity. First,
it is impossible to ensure that participants write their diary

entries in an unfiltered way. Second, diary studies follow
a case-study approach. In the diary study, we aimed for
in-depth understanding, rather than statistical validity. We
read students entries consistently, and frequently requested
additional information or explanation, which should have
counteracted any withholding. Also regarding diaries, we
acknowledge that there was no way to ensure that participants
from both groups received equivalent feedback on their diaries.
To reduce this possible threat, the researchers visited the
diaries on a daily basis, posting comments to on all diaries
that changed since the prior visit.

Another potential threat to our results is the data sub-
jectivity of the qualitative diary analysis. We grounded our
findings in the data collected and presented excerpts to miti-
gate this threat.

Participants were compensated $30 for their participation
in this study.

5 STUDY 3: USER SURVEY

To garner additional qualitative insights into developers’ per-
ception of task switching and interruptions, we conducted a
survey.

5.1 Participants and Methods

We sent an online survey to 700 professional software devel-
opers.

5.2 Results

5.3 Threats to Validity

Get if from perception productivity paper.

6 DISCUSSION

6.1 Interruption Finite State Machine

We propose a simple Final State Automata (FSA) which aids
to explain and characterize various types of interruptions.

6.2 Research and Practical Implications

7 CONCLUSION

REFERENCES
[1] Zahra Shakeri Hossein Abad, , Guenther Ruhe, and Mike Bauer.

2017. Task Interruptions in Requirements Engineering: Reality
versus Perceptions!. In Requirements Engineering Conference
(RE), 2017 IEEE 25th International. IEEE, 6–15.

[2] Zahra Shakeri Hossein Abad, Guenther Ruhe, and Mike Bauer.
2017. Understanding Task Interruptions in Service Oriented Soft-
ware Development Projects: An Exploratory Study. In Proceed-
ings of the 4th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP ’17). IEEE Press,
34–40.

[3] Erik M Altmann and J Gregory Trafton. 2002. Memory for Goals:
An Activation-based Model. Cognitive science 26, 1 (2002),
39–83.

[4] John R Anderson. 1990. Cognitive Psychology and Its Implica-
tions. WH Freeman/Times Books/Henry Holt & Co.

[5] John R Anderson and Christian J Lebiere. 2014. The Atomic
Components of Thought. Psychology Press.

[6] Sandra G Hart and Lowell E Staveland. 1988. Development
of NASA-TLX (Task Load Index): Results of Empirical and
Theoretical Research. Advances in psychology 52 (1988), 139–
183.

Primary Task (pi)

Secondary Task(s)

Interruption point

Interruption Type (s1)

Primary Task

Resumption Point

Task Interruption in Software Development Projects Conference’17, July 2017, Washington, DC, USA

Primary Task

Primary Task

Primary Task

(pi)

Secondary Task

Task's Work Load
Primary Task's Complexity

Primary Task's Type

Experience level
Interruption length

Secondary Task's Complexity

Secondary Task's Type

Interruption Type (Self, External) Interruption point
Recall

Interruption Type

(sj)

Primary Task

Figure 3: Goal activations in nested interruptions
[adapted from Memory of Goals theory].

vulnerability to interruption, but simple enough not to cause
participants to despair of performing well. Through testing
with pilot participants, it was discovered that all subtasks
per trial were appropriate.
.⌦
Mental Workload (MW), [high, low], Eye-tracking

↵

.⌦Primary Task’s Complexity (PTC), [high, low], [TLX, Predefined]
↵

.⌦Secondary Task’s Complexity (STC), [high, low], [TLX, Predefined]
↵

.⌦Primary Task’s Type (PTT), [RE, Dev, Test], Predefined
↵

.⌦Secondary Task’s Type (STT), [RE, Dev, Test, others], Predefined
↵

.⌦Experience Level (EL), [1m � 3y], Questionnaire
↵

.⌦Context Switching(CS), [yes, no], Predefined
↵

.⌦Interruption Length (IL), [1min � 1hr], Context-dependent
↵

.⌦Interruption Type (IT), [self, external], Context-dependent
↵

4.5 Experimental Procedure

4.6 Data Cleaning and Preparation

Our diary study involved five data-collection activities: (1)
A daily log of the tasks assigned to the participants, (2) the
application of eye tracking tool for measuring the cognitive
load, (3) daily debriefing questionnaire, (4) an interview
following the one-week diary period, and (5) task-based TLX
questionnaire for measuring the general workload of each
task.

The time during which the daily log was kept was limited
to the participants working hours. What a participant did
during his or her time away from the job will not be in the
scope of this study. Also, minimizing invasion of privacy
will help us achieve a good working relationship with the
participants. Figure ?? represents an overall overview of the
tools and tasks which will be involved in this study.

Since eye-tracking data is inherently noisy, which is mainly
due to the blinking and tracking errors, a smoothing filter
must be applied on the data before it can be analyzed.

4.7 Results

4.8 Threats to Validity

Diary studies can introduce some threats to validity. First,
it is impossible to ensure that participants write their diary

entries in an unfiltered way. Second, diary studies follow
a case-study approach. In the diary study, we aimed for
in-depth understanding, rather than statistical validity. We
read students entries consistently, and frequently requested
additional information or explanation, which should have
counteracted any withholding. Also regarding diaries, we
acknowledge that there was no way to ensure that participants
from both groups received equivalent feedback on their diaries.
To reduce this possible threat, the researchers visited the
diaries on a daily basis, posting comments to on all diaries
that changed since the prior visit.

Another potential threat to our results is the data sub-
jectivity of the qualitative diary analysis. We grounded our
findings in the data collected and presented excerpts to miti-
gate this threat.

Participants were compensated $30 for their participation
in this study.

5 STUDY 3: USER SURVEY

To garner additional qualitative insights into developers’ per-
ception of task switching and interruptions, we conducted a
survey.

5.1 Participants and Methods

We sent an online survey to 700 professional software devel-
opers.

5.2 Results

5.3 Threats to Validity

Get if from perception productivity paper.

6 DISCUSSION

6.1 Interruption Finite State Machine

We propose a simple Final State Automata (FSA) which aids
to explain and characterize various types of interruptions.

6.2 Research and Practical Implications

7 CONCLUSION

REFERENCES
[1] Zahra Shakeri Hossein Abad, , Guenther Ruhe, and Mike Bauer.

2017. Task Interruptions in Requirements Engineering: Reality
versus Perceptions!. In Requirements Engineering Conference
(RE), 2017 IEEE 25th International. IEEE, 6–15.

[2] Zahra Shakeri Hossein Abad, Guenther Ruhe, and Mike Bauer.
2017. Understanding Task Interruptions in Service Oriented Soft-
ware Development Projects: An Exploratory Study. In Proceed-
ings of the 4th International Workshop on Software Engineering
Research and Industrial Practice (SER&IP ’17). IEEE Press,
34–40.

[3] Erik M Altmann and J Gregory Trafton. 2002. Memory for Goals:
An Activation-based Model. Cognitive science 26, 1 (2002),
39–83.

[4] John R Anderson. 1990. Cognitive Psychology and Its Implica-
tions. WH Freeman/Times Books/Henry Holt & Co.

[5] John R Anderson and Christian J Lebiere. 2014. The Atomic
Components of Thought. Psychology Press.

[6] Sandra G Hart and Lowell E Staveland. 1988. Development
of NASA-TLX (Task Load Index): Results of Empirical and
Theoretical Research. Advances in psychology 52 (1988), 139–
183.

...(s3) (sn)

Suspension Period

Conference’17, July 2017, Washington, DC, USA Authors from Academia and Author from Industry

of 17 professional so�ware developers, and (2) a user survey with
132 so�ware practitioners to complement the quantitative results
with developer perception on task switching and interruptions.

3.1 Study 1: Retrospective Analysis
To gain a broad view of how disruptive task switching and inter-
ruptions can be varied by interruption characteristics, we conduct
a longitudinal, retrospective study of 4,910 recorded tasks of 17
professional so�ware developers. During the 1.6 years of this study,
we develop and test our conceptual framework (e.g. dependent,
independent, and confounding variables) through two exploratory
studies. �e �rst experiment was conducted on 7,770 recorded tasks
of 10 employees to ensure dataset quality and to identify potential
confounding variables, such as interruption source and type, expe-
rience level, and task stage. �e second experiment explores the
impact of various interruption characteristics on the disruptiveness
of a very speci�c type of so�ware development tasks and helped
to garner additional insights into the problem of task switching
in so�ware development teams to be�er formulate the research’s
conceptual framework 3. We conduct this study in collaboration
with Company X 4, a large [anonymous city] independent so�ware
services company. �e datasets required for these studies were
collected from company’s task-based bug tracking and project man-
agement tool (i.e. Fogbugz 5) 6. For each employee, we recorded
100 interruptions giving us 1700 recorded interruptions.

3.2 Study 2: User Survey
To garner additional qualitative insights into developer perception
of task switching and interruptions, we use a survey. We sent an
on-line survey to 800 professional so�ware developers working
at companies of various sizes (e.g. Microso�, Tableau So�ware,
Ericsson, Bosch, and Cisco). �e survey4 included 30 question
using multiple choice, Likert scale, and open-ended questions. We
asked participants about their job roles, development experience
in general, their perception about task switching and productivity
and the interruption factors which in�uence their productivity. We
received 132 complete responses (17% response rate). Of all 132
participants, 90 (68%) listed their job as a programmer, 18 (14%) as
a so�ware architect, 16 (12%) as a tester, 5 (4%) as project manager
and 3 (2%) as requirements engineer. �e average professional
so�ware development experience per participant was 11.3 years
(median: 8; range 3 to 40). �e majority (99 or 75%) reported the
size of their company (i.e. s= number of employees) s � 1000, 11
(8%): 100  s < 1000; 7 (5%): 50  s < 100, and 8 (6%): s < 50. As
an incentive, survey respondents were given the option of being
entered into a ra�e to win one of the $50US Amazon gi� cards 7.

3.3 Conceptual Framework
�e conceptual framework for our study draws from several lines
of research and theory including multitasking studies [34], the

3Citations two these studies have been removed following double-blind review rules
4www.CompanyX.com, the company named has been removed to follow the double-
blind rules
5h�p://www.fogcreek.com/fogbugz
6�e data extraction form and a sample dataset collected for one employee are available
at h�p://�rst authors’ website
7�is study received ethics approval from the the Ethics Board of the X University

●

●

●

●

●
●

●

●

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Loadings plot

Dimension 1

D
im

en
si

on
 2

TD

CS

IT

DT

PC TTS

EL

TL

Figure 3: Loading plot for (ı�1�8) binary data

Memory of Goals [2] and multitasking theories [29], and studies
on developer productivity and task management [19, 21]. Recall
Section 2.1 discusses eight independent (ı�1�8) and two dependent
variables (�, |w |) that are the major constructs of our study. To help
interpret the results more easily, we apply homogeneity analysis
(i.e. Multiple Correspondence Analysis (MCA) [8]) on ı�1�8 to
explore and summarize the underlying variable structure. As we
recorded all of our independent variables in binary format, we
used the non-linear Principal Component Analysis (PCA) approach,
a multivariate method for categorical data. To implement this
approach, we used the homals function of package homals 8 in
R. �e loading plot presented in Figure 3 helps identify variables
that most contribute to each dimension. �e loading scores of
variables in each dimension are used as coordinates. �e distance
from each point (i.e. variable) to the abscissa (i.e. Dimension 1) or
the ordinate (i.e. Dimension 2) gives a measure of the contribution
of the point to each dimension. �e greater the perpendicular
distance from each point to an axis, the stronger the contribution
of that point to the corresponding dimension [8]. As illustrated in
Figure 3, Dimension 1 has high loadings on ı�1�4 (i.e. CS, TD, IT, and
DT) and describes context-speci�c characteristics such as the
context, type, and source of the task switching. Likewise, variables
ı�5�8 (i.e. PC, EL, TL, and TS) contribute to Dimension 2, which
describes task-speci�c characteristics such as the abstraction
level and the priority of the task as well as the required knowledge
for performing the task. In the rest of this paper, we use these two
dimensions for reporting and interpreting the results.

.⌦
Primary Task’s Context, [Project Id], [Company X’s Dataset⇤]↵

.⌦Secondary Task’s Context, [Project Id], [Company X’s Dataset]↵

.⌦Primary Task’s Type, [Arch, Prog, Test, UI, Dep], [Manual Data Analysis⇤⇤]↵

.⌦Secondary Task’s Type, [Arch, Prog, Test, UI, Dep], [Manual Data Analysis]↵⌦
Interruption Type, [Self, External], [Manual Data Analysis]↵⌦
Daytime, [Morning, A�ernoon], [Data Analysis]↵⌦
Priority Change, [Same, Di�erent], [Data Analysis]↵

.⌦Experience Level, [Avg. 12.5], [Company X’s Dataset, LinkedIn⇤⇤⇤]↵

.⌦Task Level, [Sub-task, Main], [Data Analysis]↵

.⌦Task’s Temporal Stage, [Early, Late], [Manual Data Analysis]↵

.⌦Suspension Period, [0 � 10 days], Manual Data Analysis
↵

.⌦Nested Interruption, [1 � 15 tasks], Manual Data Analysis
↵

.

8h�ps://cran.r-project.org/web/packages/homals/homals.pdf

Conference’17, July 2017, Washington, DC, USA Authors from Academia and Author from Industry

of 17 professional so�ware developers, and (2) a user survey with
132 so�ware practitioners to complement the quantitative results
with developer perception on task switching and interruptions.

3.1 Study 1: Retrospective Analysis
To gain a broad view of how disruptive task switching and inter-
ruptions can be varied by interruption characteristics, we conduct
a longitudinal, retrospective study of 4,910 recorded tasks of 17
professional so�ware developers. During the 1.6 years of this study,
we develop and test our conceptual framework (e.g. dependent,
independent, and confounding variables) through two exploratory
studies. �e �rst experiment was conducted on 7,770 recorded tasks
of 10 employees to ensure dataset quality and to identify potential
confounding variables, such as interruption source and type, expe-
rience level, and task stage. �e second experiment explores the
impact of various interruption characteristics on the disruptiveness
of a very speci�c type of so�ware development tasks and helped
to garner additional insights into the problem of task switching
in so�ware development teams to be�er formulate the research’s
conceptual framework 3. We conduct this study in collaboration
with Company X 4, a large [anonymous city] independent so�ware
services company. �e datasets required for these studies were
collected from company’s task-based bug tracking and project man-
agement tool (i.e. Fogbugz 5) 6. For each employee, we recorded
100 interruptions giving us 1700 recorded interruptions.

3.2 Study 2: User Survey
To garner additional qualitative insights into developer perception
of task switching and interruptions, we use a survey. We sent an
on-line survey to 800 professional so�ware developers working
at companies of various sizes (e.g. Microso�, Tableau So�ware,
Ericsson, Bosch, and Cisco). �e survey4 included 30 question
using multiple choice, Likert scale, and open-ended questions. We
asked participants about their job roles, development experience
in general, their perception about task switching and productivity
and the interruption factors which in�uence their productivity. We
received 132 complete responses (17% response rate). Of all 132
participants, 90 (68%) listed their job as a programmer, 18 (14%) as
a so�ware architect, 16 (12%) as a tester, 5 (4%) as project manager
and 3 (2%) as requirements engineer. �e average professional
so�ware development experience per participant was 11.3 years
(median: 8; range 3 to 40). �e majority (99 or 75%) reported the
size of their company (i.e. s= number of employees) s � 1000, 11
(8%): 100  s < 1000; 7 (5%): 50  s < 100, and 8 (6%): s < 50. As
an incentive, survey respondents were given the option of being
entered into a ra�e to win one of the $50US Amazon gi� cards 7.

3.3 Conceptual Framework
�e conceptual framework for our study draws from several lines
of research and theory including multitasking studies [34], the

3Citations two these studies have been removed following double-blind review rules
4www.CompanyX.com, the company named has been removed to follow the double-
blind rules
5h�p://www.fogcreek.com/fogbugz
6�e data extraction form and a sample dataset collected for one employee are available
at h�p://�rst authors’ website
7�is study received ethics approval from the the Ethics Board of the X University

●

●

●

●

●
●

●

●

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Loadings plot

Dimension 1

D
im

en
si

on
 2

TD

CS

IT

DT

PC TTS

EL

TL

Figure 3: Loading plot for (ı�1�8) binary data

Memory of Goals [2] and multitasking theories [29], and studies
on developer productivity and task management [19, 21]. Recall
Section 2.1 discusses eight independent (ı�1�8) and two dependent
variables (�, |w |) that are the major constructs of our study. To help
interpret the results more easily, we apply homogeneity analysis
(i.e. Multiple Correspondence Analysis (MCA) [8]) on ı�1�8 to
explore and summarize the underlying variable structure. As we
recorded all of our independent variables in binary format, we
used the non-linear Principal Component Analysis (PCA) approach,
a multivariate method for categorical data. To implement this
approach, we used the homals function of package homals 8 in
R. �e loading plot presented in Figure 3 helps identify variables
that most contribute to each dimension. �e loading scores of
variables in each dimension are used as coordinates. �e distance
from each point (i.e. variable) to the abscissa (i.e. Dimension 1) or
the ordinate (i.e. Dimension 2) gives a measure of the contribution
of the point to each dimension. �e greater the perpendicular
distance from each point to an axis, the stronger the contribution
of that point to the corresponding dimension [8]. As illustrated in
Figure 3, Dimension 1 has high loadings on ı�1�4 (i.e. CS, TD, IT, and
DT) and describes context-speci�c characteristics such as the
context, type, and source of the task switching. Likewise, variables
ı�5�8 (i.e. PC, EL, TL, and TS) contribute to Dimension 2, which
describes task-speci�c characteristics such as the abstraction
level and the priority of the task as well as the required knowledge
for performing the task. In the rest of this paper, we use these two
dimensions for reporting and interpreting the results.

.⌦
Primary Task’s Context, [Project Id], [Company X’s Dataset⇤]↵

.⌦Secondary Task’s Context, [Project Id], [Company X’s Dataset]↵

.⌦Primary Task’s Type, [Arch, Prog, Test, UI, Dep], [Manual Data Analysis⇤⇤]↵

.⌦Secondary Task’s Type, [Arch, Prog, Test, UI, Dep], [Manual Data Analysis]↵⌦
Interruption Type, [Self, External], [Manual Data Analysis]↵⌦
Daytime, [Morning, A�ernoon], [Data Analysis]↵⌦
Priority Change, [Same, Di�erent], [Data Analysis]↵

.⌦Experience Level, [Avg. 12.5], [Company X’s Dataset, LinkedIn⇤⇤⇤]↵

.⌦Task Level, [Sub-task, Main], [Data Analysis]↵

.⌦Task’s Temporal Stage, [Early, Late], [Manual Data Analysis]↵

.⌦Suspension Period, [0 � 10 days], Manual Data Analysis
↵

.⌦Nested Interruption, [1 � 15 tasks], Manual Data Analysis
↵

.

8h�ps://cran.r-project.org/web/packages/homals/homals.pdf

Figure 2: An overview of task switching spectrum and independent variables of this study. Legend’s symbols can be interpreted
as

〈
independent variable, [potential values], data collection method

〉
. [*]: We used the project ID provided in the dataset to dis-

tinguish di�erent contexts. [**]: We used text mining and manual analysis on the metadata associated with each task to explore
the type of the tasks under study. [***]: We used employee’s LinkedIn account to extract required information about their work
experience

Independent Variables (Task Switching Characteristics)
À Context Switching [CS=1, Di�erent project] (ıν1): switching the project along with task switching [24, 37].
Á Type Di�erence [TD=1, Di�erent type] (ıν2): the type of the primary and the secondary tasks [9].
Â Interruption Type [IT=1, Self] (ıν3): Self-interruption if the interruption initiated by the subject of the primary task;
external-interruption if it is motivated by some external events in the environment [31, 32].
Ã Daytime [DT=1, Morning] (ıν4): �e time of the day that task switching occurs [19]. All task switching and interruptions that were
occurred between 11 am-1:30 pm (i.e. lunch time) were excluded from our analysis.
Ä Priority Change [PC=1, Same Priority] (ıν5) [9].
Å Experience Level [EL=1, More experience] (ıν6): We recorded the experience level of each of the included employees in our
retrospective study from their LinkedIn account. �e average professional so�ware development experience of participants is 10.5
(range 4 to 25) [8, 33].
Æ Task Level [TL=1, Sub-task](ıν7): the abstraction level of task [32]. We used ParentId column of the dataset to identify task levels.
Ç Task Stage [TS=1, Late stage] (ıν8): the completion state of the task [15, 26]. We used temporal task logs and manually analyzed this
dataset to identify the completion level of each task.

other and identi�ed the time, user input, emails, and planned meet-
ings as factors in�uencing productivity. Abad et al. [1–3] recently
conducted three studies to investigate the disruptiveness of task
switching in service-oriented so�ware development projects as
well as in requirements engineering tasks. �ey investigated the
impact of interruption length on the duration of interrupted tasks
and found that interruption length of a speci�c task, regardless of
the type of this task, does not in�uence its duration signi�cantly.
Moreover, they found that, compared to other types of development
tasks, requirements engineering tasks are the most vulnerable tasks
to task switching and interruptions.

In terms of the frequency of task switching and developers’
productivity, Tregubov et al. [36] conducted a retrospective anal-
ysis and propose a way to evaluate the number of cross-project
interruptions using self-reported develop work logs. �e authors
reported that developers who, on a typical day, are involved in
two or more projects, spend 17% of their development e�ort on
cross-project interruptions. While the results of this work reveal
a strong correlation between the number of projects and number
of reported interruptions, it shows the correlation between the

number of projects and e�ort spent on cross-project interruptions
is relatively weak. Cruz et al. [12] conducted a large-scale study
to investigate the impact of work fragmentations on developers’
productivity and found that work fragmentation is positively cor-
related with lower observed productivity for an entire session and
longer suspension lengths strengthen this e�ect. Chong and Siino
[10] compared the behaviour and the disruptive impact of interrup-
tions among paired and solo programmers. �ey found that various
interruption characteristics such as time, type, and length of the
interruptions as well as strategies for handling work interruptions
are signi�cantly di�erent between paired and solo programmers.
Similarly, Ko et al. [17] conducted a study to understand informa-
tion needs and the behaviour of task switching and interruptions in
collocated so�ware development teams. �ey found that coworkers
are the most frequent source of information in so�ware develop-
ment teams which causes continual unavoidable task switching
and interruptions due to an information need.

Our study con�rms some of these results such as the negative
impact of task switching on developers’ productivity as well as mul-
titasking challenges facing so�ware development teams. Our study

EASE’18, June’18, Christchurch, New Zealand Zahra Shakeri Hossein Abad, Ken Barker, Oliver Karras, Kurt Schneider, and Mike Bauer

extends previous research in the following ways: (1) we model
and investigate a comprehensive set of interruption characteristics
including task-speci�c and context-speci�c factors and study the
impact of these factors on task interruptions in various types of
so�ware development tasks; (2) we provide a comparison between
various development tasks (i.e. programming, testing, architecture
design, interface design, and deployment) in terms of their vulnera-
bility to interruptions and task switching. �e comprehensiveness
of this work in terms of the size of our datasets and the number of
dependent and independent variables further builds on these past
contributions.

3 METHODS
To achieve our study goals we followed a mixed methods approach
including: (1) a longitudinal data analysis on 4,910 recorded tasks
of 17 professional so�ware developers, and (2) a user survey with
132 so�ware practitioners to complement the quantitative results
with developer perception on task switching and interruptions.

3.1 Study 1: Retrospective Analysis
To gain a broad view of how disruptive task switching and inter-
ruptions can be varied by interruption characteristics, we conduct
a longitudinal, retrospective study of 4,910 recorded tasks of 17
professional so�ware developers. During the 1.6 years of this study,
we developed and tested our conceptual framework (e.g. dependent,
independent, and confounding variables) through two exploratory
studies. �e �rst experiment was conducted on 7,770 recorded tasks
of 10 employees to ensure dataset quality and to identify potential
confounding variables, such as interruption source and type, expe-
rience level, and task stage. �e second experiment explores the
impact of various interruption characteristics on the disruptiveness
of a very speci�c type of so�ware development tasks and helped
to garner additional insights into the problem of task switching
in so�ware development teams to be�er formulate the research’s
conceptual framework[1–3]. We conduct this study in collaboration
with Arcurve 3, a large Calgary independent so�ware services com-
pany. �e datasets required for these studies were collected from
Arcurves’s task-based bug tracking and project management tool
(i.e. Fogbugz 4). For each employee, we recorded 100 interruptions
giving us 1700 recorded interruptions 5.

3.2 Study 2: User Survey
To garner additional qualitative insights into developers’ perception
of task switching and interruptions, we use a survey. We sent an
on-line survey to 800 professional so�ware developers working
at companies of various sizes (e.g. Microso�, Tableau So�ware,
Ericsson, Bosch, and Cisco). �e survey included 30 question us-
ing multiple choice, Likert scale, and open-ended questions. We
asked participants about their job roles, development experience
in general, their perception about task switching and productivity
and the interruption factors which in�uence their productivity. We
received 132 complete responses (17% response rate). Of all 132

3www.arcurve.com
4h�p://www.fogcreek.com/fogbugz
5�e data extraction form and a sample dataset collected for one employee are available
h�p://wcm.ucalgary.ca/zshakeri/projects

●

●

●

●

●
●

●

●

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

Loadings plot

Dimension 1

D
im

en
si

on
 2

TD

CS

IT

DT

PC TTS

EL

TL

Figure 3: Loading plot for (ıν1−8) binary data

participants, 90 (68%) listed their job as a programmer, 18 (14%)
as a so�ware architect, 16 (12%) as a tester, 5 (4%) as project man-
ager and 3 (2%) as requirements engineer. �e average professional
so�ware development experience per participant was 11.3 years
(median: 8; range 3 to 40). �e majority (99 or 75%) reported the
size of their company (i.e. s= number of employees) s ≥ 1000, 11
(8%): 100 ≤ s < 1000; 7 (5%): 50 ≤ s < 100, and 8 (6%): s < 50. As
an incentive, survey respondents were given the option of being
entered into a ra�e to win one of the $50US Amazon gi� cards.

3.3 Conceptual Framework
�e conceptual framework for our study draws from several lines
of research and theory including multitasking studies [37], the
Memory of Goals [5] and multitasking theories [32], and studies
on developers’ productivity and task management [22, 24]. Recall
Section 2.1 discusses eight independent (ıν1−8) and two dependent
variables (∆, |w |) that are the major constructs of our study. To help
interpret the results more easily, we apply homogeneity analysis
(i.e. Multiple Correspondence Analysis (MCA) [11]) on ıν1−8 to
explore and summarize the underlying variable structure. As we
recorded all of our independent variables in binary format, we
used the non-linear Principal Component Analysis (PCA) approach,
a multivariate method for categorical data. To implement this
approach, we used the homals function of package homals 6 in
R. �e loading plot presented in Figure 3 helps identify variables
that most contribute to each dimension. �e loading scores of
variables in each dimension are used as coordinates. �e distance
from each point (i.e. variable) to the abscissa (i.e. Dimension 1) or
the ordinate (i.e. Dimension 2) gives a measure of the contribution
of the point to each dimension. �e greater the perpendicular
distance from each point to an axis, the stronger the contribution
of that point to the corresponding dimension [11]. As illustrated in
Figure 3, Dimension 1 has high loadings on ıν1−4 (i.e. CS, TD, IT, and
DT) and describes context-speci�c characteristics such as the
context, type, and source of the task switching. Likewise, variables
ıν5−8 (i.e. PC, EL, TL, and TS) contribute to Dimension 2, which
describes task-speci�c characteristics such as the abstraction
level and the priority of the task as well as the required knowledge
for performing the task. In the rest of this paper, we use these two
dimensions for reporting and interpreting the results.

6h�ps://cran.r-project.org/web/packages/homals/homals.pdf

Task Interruption in So�ware Development Projects EASE’18, June’18, Christchurch, New Zealand

Table 1: Top 5 reasons for self-interruptions (%(#) represents per-
centage(number) of survey participants)

Reasons for self-interruptions/task switchings %(#)
Being blocked on a task (e.g. tool obstacles, technical issues) 37 (30%)
Ge�ing sidetracked to other tasks (e.g. remembering other tasks,
concentration lapse)

28 (23%)

Planning issues and priority changes (e.g. tasks with near due dates,
short term deadlines)

23 (19%)

A need for more information/ technical knowledge (e.g. lack of docu-
mentation, waiting for feedback)

20 (16%)

Ge�ing bored with the task (e.g. complex and lengthy tasks) 15 (12%)

3.4 Research �estions (RQs)
We formulated the following research questions:
RQ1- Task-speci�c Vulnerability: How do various interrup-

tion characteristics impact the vulnerability of program-
ming, testing, architecture design, UI design, and deploy-
ment tasks?

RQ2- Comparative Vulnerability: Which types of develop-
ment tasks are more vulnerable to task switching/interrup-
tions?

RQ3- Two-way Impact: How does the interaction between vari-
ous interruption characteristics (ıν1−8) in�uence the vul-
nerability of development tasks to interruptions?

3.5 Data Analysis
To test for the impact of disruptiveness factors and the di�erence
between various task types (RQs 1-2), we use the non-parametric
Kruskal-Wallis and Kruskal-Wallis posthoc tests, respectively. To
determine the statistical signi�cance we use the p-values (≤ 0.05),
and report as signi�cant, di�erences at 95% con�dence interval,
which we use to compare the disruptiveness of interruptions among
di�erent task types. Additionally, to check the correlation between
participants’ responses to survey questions, we use Spearman’s
rank test and de�ne |ρ | ≥ 0.50 as a strong correlation coe�cient.
To model the cross-factor impact of disruptiveness factors (RQ3)
we use the Scheirer-Ray-Hare (SRH) test, a non-parametric two-
way ANOVA and an extension of the Kruskal-Wallis test. As a
high correlation between predictor variables impact the statistical
tests of predictors individually, we �rst applied Phi coe�cient tests
to statistically test the correlation between all of the independent
variables for each of programming, testing, architecture/UI design,
and deployment task types. For all correlated factors, we only use
the two-way component of SRH tests and to statistically test the
signi�cant impact of individual disruptiveness factors on each task
type, we applied the Kruskal-Wallis posthoc tests. To analyze the
open-ended questions of the survey, we use a modi�ed version
of the grounded theory method [34], as a qualitative text analy-
sis method, and use the Saturate App 7 tool to code the survey
responses.

4 RESULTS
Practitioners’ Perceptions of Task Switching and Interrup-
tions: When asked about whether participants consider task
switching a type of interruption, 107 (81%) stated that they con-
sider task switching a speci�c type of interruptions because there
is always some ramp-up time when switching between tasks as
described by one participant’s comment: “Saying that task switching

7 www.saturateapp.com/

Table 2: RQ1- Impact of interruption characteristics on di�erent
task types. [l] represents characteristics that make interruptions
signi�cantly more disruptive (based on 95% con�dence analysis).

………Pairs Arch Prog Test UI Dep
∆ |w | ∆ |w | ∆ |w | ∆ |w | ∆ |w |

Co
nt

ex
t-s

pe
ci

�c
Fa

ct
or

s

Kruskal Wallis 0.01 0.06 0.002 0.03 0.3 0.06 0.1 0.6 0.03 0.08
same project
di� project l l l l
Kruskal Wallis 0.5 0.1 0.06 2e-9 5e-6 5e-11 0.8 0.7 0.2 0.01
di� type
same type l l l l
Kruskal Wallis 0.04 0.2 2e-9 2e-8 2e-9 3e-9 0.02 0.5 0.01 0.004
self-Interruption l l l l l l l l
ext-Interruption
Kruskal Wallis 0.5 0.1 0.001 1e-5 0.01 0.03 4e-8 0.2 0.6 0.9
morning l
a�ernoon l l l l

Ta
sk

-s
pe

ci
�c

Fa
ct

or
s

Kruskal Wallis 0.2 0.4 0.5 1e-7 0.6 0.01 0.02 0.8 0.9 0.8
same priority l l l
di� priority
Kruskal Wallis 0.2 0.8 0.6 0.2 0.01 0.2 0.2 0.06 0.01 0.03
less experience l l l
more experience
Kruskal Wallis 0.002 0.06 0.03 0.01 0.4 0.2 0.01 0.1 0.01 0.03
sub-task
main task l l l l l l
Kruskal Wallis 0.7 0.5 0.3 0.3 0.1 0.2 0.1 0.5 0.1 0.04
early stage
late stage l

is not an interruption sounds like multitasking is possible. It is not
possible and changing the task will interrupt the other task every time
and it takes approximately 5-20 minutes to get into the �ow state
on the task at hand every time there is a switch”. We asked survey
participants to list the main reasons that would make them have
unplanned task switching. We iterated through the responses using
the grounded theory approach [34]. Recall from Table 1, ge�ing
blocked or ge�ing sidetracked to other tasks, planning issues, a
need for more information, and boredom are the most common
wri�en responses to this question.

4.1 RQ1- Task-speci�c Vulnerability
We follow a template and posed 80 null hypotheses to explore fac-
tors that may explain the disruptiveness of interruptions in various
types of so�ware development tasks: H0 = Interruption charac-
teristic ıνi does not signi�cantly impact the ∆ and/or |w | of
task switchings in task 〈T 〉. Where ∆ denotes the suspension
period, |w | the length of nested task switching, and 〈T 〉 denotes
the task type. As illustrated in Table 2, of 34 (43%) rejected tests,
21 (62%) are related to contextual factors, and 13 (38%) are related
to task-speci�c factors. �is implies that, compared to task-speci�c
factors, contextual factors (e.g. context switching and interruption
type) are more potent determinants of task switching disruptiveness
in so�ware development tasks.

Finding 1−1: �e interruption type (i.e. self/external) signi�-
cantly impacts at least one disruptiveness factor for all of the task
types under study. As illustrated in Table 2, self-interruptions
make task switching and interruptions more disruptive by nega-
tively impacting the length of the suspension period and the num-
ber of nested interruptions. Task level (i.e. sub-task/main) comes
next, with signi�cantly impact on four task types (i.e. architecture,
programming, UI, and deployment). Context switching and type
switching each negatively impact three task types.

Finding 1−2: Priority change, daytime, and type di�erence are
characteristics that signi�cantly impact both programming and
testing tasks’ interruptions. Looking at Table 2, the 95% con�dence
analysis shows that a�ernoon interruptions or switching to another
task with the same priority, or a di�erent type makes program-
ming/testing task interruptions more vulnerable. Moreover, while

EASE’18, June’18, Christchurch, New Zealand Zahra Shakeri Hossein Abad, Ken Barker, Oliver Karras, Kurt Schneider, and Mike Bauer

20
40

60
80

Responses

Pe
rc

en
ta

ge
 o

f E
xt

er
na

l I
nt

er
ru

pt
io

ns

●

● ●● ●●●●

●● ●● ●●● ●
●

●● ●

●●● ●●●
●

●
●

●● ●● ●●●

●
●●● ●●●● ●●●● ●●● ●●●●● ●

●●●●

●●●● ●●
●
●●
●●●
● ● ●●●● ●● ●●

●● ●●●● ●● ●●●
●●
●●●●●●●●●●

●●●
●

●●●●●

(a) Portion of external in-
terruptions

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1CS
ize

Ex
pe
rie
nc
e

TS
ize

Np
roj
ec
ts

Ex
tFr
eq

Dis
Ex
t
Sw
itch
Fre
q

CSize

Experience

TSize

Nprojects

ExtFreq

DisExt

SwitchFreq

(b) Spearman’s ranked correlations

Figure 4: Perceived frequency and disruptiveness of external
interruptions and correlation analysis. [CSize=Company size,
TSize=Team Size, NProject= # of projects that participants are in-
volved in, ExFreq= the frequency of external interruptions, Dis-
Ext= Disruptiveness of external interruptions, SwitchFreq= the fre-
quency of task switching]

context switching does not signi�cantly impact the vulnerability
of testing and UI tasks to interruptions, switching to a di�erent
project negatively impacts the ∆ of architectural, programming,
and deployment tasks.

Finding 1−3: Following the results of the Kruskal-Wallis tests,
only testing interruptions are signi�cantly impacted by the experi-
ence level (p=0.01). Table 2 shows less experienced testers are more
vulnerable to interruptions than experienced ones. Likewise, task
stage impacts only one task type (i.e. deployment tasks).

Discussion 1−1: Although our analysis revealed the statistically
signi�cant negative impact of self-interruptions on the vulnerabil-
ity of all development tasks, 107 (81%) participants stated external-
interruptions are more disruptive than self-interruptions. When
asked with an open-ended question about the impact of interruption
type on their productivity, most of the participants who selected
external interruptions, stated external interruptions are unexpected
and are not in their control so are more disruptive. �ey believed
they cannot control the timing of these interruptions which subse-
quently negatively impacts their performance when they resume
the interrupted task, as evidenced in the following quote from one
of the participants: “I tend not to have control over these interruptions
and thus I need to follow what they are saying and �nd a way to make
what they are saying happen, and this causes me to become very in-
volved with that one thing which takes time”. However, the results of
two recent studies conducted by Katidioti et al. [16] comparing the
disruptiveness of self and external interruptions support the results
of our quantitative analysis and reveal that external-interruptions
are less disruptive than self-interruptions. Similarly, a recent study
by Adler and Benbunan-Fich [4] shows that more self-interruptions
result in lower accuracy in resumed tasks which causes perfor-
mance di�culties and consequently sub-optimal results. Another
participant of our survey who selected self-interruptions as more
disruptive stated that: “External interruptions are disruptive, but
do not necessarily add more items to my cognitive stack. Internal
interruptions are always caused by me having (or perceiving myself
to have) too many tasks to solve”.

We speculate that the di�erence between our survey results and
the results of our retrospective analysis and existing theoretical and
practical evidence could be due to the high frequency of external

interruptions in so�ware development environments. We asked
survey participants to, on a scale from 1 to 100, rate what portion
of their task switching and interruptions in a day are triggered by
an external event. It can be seen from Figure 4a that responses
given to this question are slightly skewed to le� which implies
that frequencies are more towards the higher side, with mean (and
median) values of 54% (range 10-90%). Moreover, we further inves-
tigated the association between the disruptiveness and frequency
of external interruptions reported by participants and other factors
such as their company and team size as well as their experience
level and the number of projects they contribute to on a typical
day. Spearman’s rank correlation tests (summarized in Figure 4b)
show the perceived frequency and the disruptiveness of external
interruptions do not correlate with their team size, experience level,
or the number of projects they are involved in (e.g. TSize-ExtFreq:
rho= -0.12, p=0.2; TSize-DisExt: rho= -0.15, p=0.12).

Discussion 1−2: We asked survey respondents to rate the neg-
ative impact of context and type switching on a Likert-scale. 120
(91%) and 102 (77%) of the participants indicated neutrality or agree-
ment about the negative impact of context switching and type
changes, respectively (Figure 5). �e participants predominantly
stated that context switching requires a di�erent mindset which
places more demands on cognitive resources and makes task switch-
ing more disruptive: “while it depends on how much you have to
remember about a speci�c task/project, context-switching can require
more ramp-up because there’s more context you have to bring back up”.
�is �nding is supported by existing literature [22, 23, 36] evaluat-
ing the negative impact of context switching on work fragmentation
and consequently on developers’ productivity and quality of work
produced.

Discussion 1−3: While our analysis shows a limited contribu-
tion of experience level to the vulnerability of development tasks
with interruptions, 110 (83%) participants stated that task switching
in situations where their background knowledge of performing a
task is shallow or they are learning, negatively impacts their per-
formance in the primary task: “[…] I don’t have the most structured
learning process, so sometimes the structure is not really clear in my
head until I have explored a lot of it. If the structure is incomplete, then
it’s harder to remember, which means that any interruption will have
a much worse impact on it than if I already knew the relevant area of
code”. Researchers have studied the e�ect of experience level on the
cognitive load of tasks. Sweller [35] and Gregory et al. [33] argue
that experts have the ability to recognize the problem state from
their previous experiences and accurately recall the information
required for resuming their interrupted tasks. Conversely, novices
are not able to memorize the problem state of their previous tasks
and are forced to use their general problem-solving techniques to
resume their interrupted tasks.

Figure 5 shows 91 (69%) participants considered early stage inter-
ruptions as a factor that negatively a�ects their performance a�er
resuming the primary task. �e most common wri�en response
was that the early investment in a task is critical to building context
about an issue and determining next steps when returning from an
interruption. �is is particularly true in the early stages of a new
project because “early stage interruptions result in nearly a perfect
storm of wasted time since the time I spent ge�ing engaged had no
pay-o�”. Moreover, only 50 (38%) respondents considered late stage

Task Interruption in So�ware Development Projects EASE’18, June’18, Christchurch, New Zealand

3%
8%

13%
9%

23%
39%

84%
83%
69%
66%
48%
38%

14%
8%

18%
25%
29%
23%

just got my mind engaged on this task

switched the task at the late stages of the task
switched to a different task type

switched to a task from a different project

my background knowledge is not deep enough
Immediate unplanned requests

100 50 0 50 100
Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 5: Perceived impact of interruption characteristics

interruptions disruptive: “If the end is in sight, all the necessary work
is laid out and is pre�y easy to do without much thought. You’ve likely
�gured out the main points of the task if you are almost complete,
at this point it’s a ma�er of ge�ing the work done and not �guring
out how to do it”. However, our retrospective analysis revealed
that only deployment tasks are impacted by the temporal point of
interruptions (p= 0.04), and this factor does not signi�cantly im-
pact the vulnerability of other development tasks to interruptions.
Contrary to the survey results and the results of our repository
analysis, several studies (e.g. [13, 25]) investigated the impact of
task stage on the cognitive cost of interruptions and found that
middle or late stage interruptions cause longer suspension period
(∆) and consequently decrease in performance and work quality.
�is di�erence raises questions about the cognitive cost of interrup-
tions at di�erent stages of a task and implies the need for a further
investigation on this factor (i.e. TS).

Practitioner’s corner 1: Considering the negative impact of
self-interruptions on so�ware developers’ productivity (as dis-
cussed in Finding1−1 and Discussion1−1), we recommend so�ware
developers minimize the frequency of their voluntary task switch-
ing. We also recommend that frequent context switching at either
task type or project level negatively impacts programmers and
testers’ productivity by causing fragmented work and longer sus-
pension length. �us, since switching back and forth between
di�erent projects and task types decreases e�ciency by forcing
loading and unloading of context per switch, it might be more e�-
cient if developers ask their questions from co-workers working on
the same project/task type. Further, as stated by our survey partici-
pants, less experienced so�ware developers �nd it harder to capture
the context they were in before switching their primary task and
they are most likely to need to backtrack further when they resume
their interrupted tasks. �us, so�ware developers should ask their
unplanned questions from co-workers who are more experienced
in the topic related to their ongoing task. Consistent with other
research [13, 25] and stated by 50 (38%) participants of our survey,
switching a task at late stages of the task causes more cognitive
cost when recalling the task’s context: “I have to rethink from the
beginning to make sure that there was no mistake in the previous
thoughts”. However, as stated by one of the survey participants: “It
depends more on complexity at the stage versus which stage in general.
I have found it quite easy to resume later stage tasks if they are not
complex. A lot of so�ware development tasks are complex though so it
could tend to be harder”. �ese apparent con�icts suggest additional
research on this factor is required.

4.2 RQ2- Comparative Vulnerability
We posed 160 null hypotheses following this template: H0 =�e
disruptive impact of ıνi on ∆ and/or |w | is not signi�cantly

di�erent between tasks 〈T ,T ′〉, where i ∈ {1, 2, . . . , 8} and ıνi ,
and ∆/|w | denote independent variables and disruptive factors,
respectively. T and T ′ represent two di�erent task types for all
possible pairs of task types (i.e.

(5
2
)
= 10 pairs). Table 3 presents the

p-value for each of these tests. �e results of our 95% con�dence
interval analysis (e.g. Figure 6a-q) show that in all cases that task
or context-speci�c factors make a signi�cant di�erence between
deployment and other development tasks, deployment tasks are
more vulnerable to interruptions than other task types. �is could
be because deployment tasks are highly interdependent on di�erent
tasks within a development process, which makes their resumption
more complicated due to the associated tasks.

Finding 2−1: �e results of Kruskal-Wallis tests show that pri-
ority change makes a statistically signi�cant di�erence (p =0.002)
between the suspension length (∆) for programming and testing
tasks (Table 3). Likewise, experience level makes a signi�cant dif-
ference between the ∆ and the |w | of each of programming and
testing tasks, and UI tasks. Regarding the Task level, there is a
signi�cant di�erence in ∆ and |w | between interrupted low-level
programming tasks and each of architecture and UI design tasks.
�ere is also a signi�cant di�erence between switching low-level
testing and low-level architectural tasks with respect to suspension
length. Since the Kruskal-Wallis test only identi�es that there is
a di�erence, rather than where the di�erences lie, we used 95%
con�dence intervals (see Figure 6a-q) to perform the comparative
vulnerability analysis. We use comparison pa�erns to describe our
�ndings in the following.

Finding 2−2: For all interruption characteristics (ıνi) that make a
statistically signi�cant di�erence between tasks 〈T ,T ′〉, we provide
the following comparative pa�erns for task-speci�c factors. �ese
pa�erns compare the vulnerability of two task types 〈T ,T ′〉 to
interruption using ∆ and |w | measures.

- Priority Change [PC] (ıν5), (e.g. Figure 6e)
〈PC = 1〉 : ∆T > ∆T ′…………………………..if 〈Prog, Test〉

- Experience Level [EL] (ıν6), (e.g. Figure 6f, o)
〈EL = 0〉 : ∆T > ∆T ′, |w |T > |w |T ′… if 〈{Prog, Test}, UI〉

- Task Level [TL] (ıν7), F(e.g. Figure 6g, p)

〈T L = 1〉
{
∆T > ∆T ′, |w |T > |w |T ′ if 〈Prog, {Arch, UI}〉
∆T > ∆T ′ if 〈Test, Arch〉

Finding 2−3: We provide the following comparative pa�erns for
context-speci�c factors.

EASE’18, June’18, Christchurch, New Zealand Zahra Shakeri Hossein Abad, Ken Barker, Oliver Karras, Kurt Schneider, and Mike Bauer

Table 3: RQ2- Comparison between various development tasks concerning their vulnerability to interruption
Context-speci�c (Dimension 2) Task-speci�c (Dimension 1)

………Pairs di�erent context di�erent type interruption type daytime priority change experience level task level temporal stage
ıν1 (CS=1) ıν2 (TD=1) ıν3 (IT=1) ıν4 (DT=1) ıν5 (PC=1) ıν6 (EL=0) ıν7 (TL=1) ıν8 (TS=0)

∆ |w | ∆ |w | ∆ |w | ∆ |w | ∆ |w | ∆ |w | ∆ |w | ∆ |w |
Kruskal-Wallis 3e-4 2e-4 0.001 0.001 0.4 0.05 0.02 0.02 2e-5 4e-6 2e-4 0.003 4e-4 1e-4 0.1 0.03
Programming-Architecture 0.02* 0.03* 0.2 0.2 0.2 0.04 0.03* 0.1 0.004* 0.003* 0.8 0.04* 0.01 0.05 0.3 0.2
Programming-Test 0.001 0.001 0.01 0.1 0.4 0.9 0.6 0.4 0.003 0.3 0.3 0.4 0.3 0.25 0.07 0.2
Programming-UI 0.5 0.03* 0.2 0.05 0.3 0.001 0.04 0.02 0.4 0.2 0.04 0.01 0.04 0.02 0.1 0.08
Programming-Deployment 0.1 0.06 0.1 0.01 0.3 0.2 0.9 0.05 0.02 0.01 0.01 0.01 0.01* 0.02* 0.1 0.01
Test-Architecture 0.05* 0.03* 0.9 0.8 0.1 0.04 0.07 0.3 0.3 0.6 0.7 0.4 0.05 0.3 0.9 0.6
Test-UI 0.2 0.04* 0.9 0.02* 0.2 0.01 0.5 0.9 0.2 0.1 0.01 0.01 0.2 0.2 0.4 0.2
Test-Deployment 0.2 0.001 0.01 0.002 0.5 0.2 0.02 0.02 0.1 0.03 0.1 0.04 0.001* 0.002* 0.02 0.001
Architecture-UI 0.9 0.9 0.9 0.7 0.9 0.5 0.07 0.3 0.07 0.1 0.1 0.2 0.4 0.8 0.6 0.5
Architecture-Deployment 0.08 0.02 0.04 0.001 0.2 0.02 0.1 0.01 0.4 0.04* 0.1 0.02 0.2 0.02 0.05 0.003
Deployment-UI 0.1 0.06 0.3 0.01 0.2 0.01 0.001 0.002 0.02 0.01 0.001 1e-4 0.1 0.6 0.02 0.001
*: �e p-value of the alternative value of the corresponding variable.

2.5

5.0

7.5

10.0

Dev Test

diff proj

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

Pro
g

Text

(a)

2.5

5.0

7.5

10.0

Arch Dev Test

same project

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

Pro
g

(b)

2.5

5.0

7.5

10.0

Arch Dep Dev Test

different type

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

Pro
g

(c)

2.5

5.0

7.5

10.0

Dep Dev Test UI

morning interruption

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

Pro
g

(d)

2.5

5.0

7.5

Dep Dev Test UI

different priority

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

Pro
g

(e)

2.5

5.0

7.5

10.0

Arch Dep Dev Test UI

less experience

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

Pr
og

(f)

2.5

5.0

7.5

10.0

Arch Dev Test UI

sub−task

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

Pro
g

(g)

2.5

5.0

7.5

10.0

Arch Dep Test UI

last stage

Su
sp

en
si

on
 P

er
io

d
(d

ay
)

(h)

5

10

15

Arch Dep Dev Test

different project

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(i)

5

10

15

Arch Dev Test UI

same project

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(j)

5

10

15

Arch Dep Dev Test UI

different type

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(k)

5

10

15

Arch Dep Dev Test UI

self−interruption

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(l)

5

10

15

Arch Dep Dev Test UI

morning interruption

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(m)

5

10

15

Dep Dev Test UI

different priority

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(n)

5

10

15

Arch Dep Dev Test

less experience

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(o)

5

10

15

Arch Dep Dev UI

sub−task

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(p)

5

10

15

Arch Dep Dev Test UI

last stage

N
es

te
d

in
te

rru
pt

io
n

(#
)

Pro
g

(q)

Figure 6: RQ2- 95% con�dence interval of sample means for disruptiveness of interruption characteristics in development tasks

- Context Switching [CS] (ıν1), (e.g. Figure 6a-b, i-j)
〈CS = 1〉 : ∆T > ∆T ′, |w |T < |w |T ′….if 〈Test, Prog〉

〈CS = 0〉
{
∆T > ∆T ′, |w |T > |w |T ′ if 〈{Prog, Test}, Arch〉
|w |T > |w |T ′ if 〈{Prog, Test}, UI〉

- Type Di�erence [TD] (ıν2), F(e.g. Figure 6c, k)

〈TD = 1〉
{
∆T > ∆T ′ if 〈Test, Prog〉
|w |T > |w |T ′ if 〈{Prog, Test}, UI〉

- Interruption Type [IT] (ıν3), (e.g. Figure 6l)
〈IT = 1〉 : |w |T > |w |T ′……………………if 〈Prog, {Arch, UI}〉

* �e IT factor does not make any signi�cant di�erence of ∆ between
di�erent task types.

- Daytime [DT] (ıν4), (e.g. Figure 6d, m)
〈DT = 1〉 : ∆T > ∆T ′, |w |T > |w |T ′…..if 〈Prog, UI〉
〈DT = 0〉 : ∆T > ∆T ′…………………………if 〈Prog, Arch〉

Discussion 2: Based on the results of Findings 2-1 and 2-2, in
all cases where there is a signi�cant di�erence between the vul-
nerability of programming and testing tasks and other task types
(p<0.05), these two types are more vulnerable to task switching
and interruption. �is �nding is consistent with the experimental
evidence and theoretical analysis conducted by Sweller [35], which

shows that solving problems requiring a large number of items be
stored in human short-term memory may contribute to excessive
cognitive load. Insofar, as programming and testing tasks require
a high number of active statements in developers’ working mem-
ory, which contributes to a higher work load, it is reasonable to
expect that switching programming and testing tasks make them
more vulnerable to task switching comparing to architectural and
UI tasks. However, when we asked survey respondents about the
negative impact of task switching/interruption on di�erent types
of development tasks (responses are summarized in Figure 7), 117
(89%) participant reported high or moderate levels of the negative
impact of task switching on architecture design tasks (i.e. High: 62%,
Moderate: 27%). Programming and testing tasks come next, with
each of them being 51(±11)% and 39% level of agreement. However,
looking at comparative pa�erns explored by our retrospective anal-
ysis (see Table 3 and Figure 6), we note that Architectural tasks in
all of the cases are signi�cantly di�erent from other task types and
are less vulnerable to interruptions. We investigate this di�erence
by conducting a comparison between the survey responses relating
to the vulnerability of di�erent development tasks to interruption,
grouped by the participants’ reported job roles. �e responses for
the task type associated with each job role received higher rating
compared to other task types, showing respondent’s job role im-
pacts the responses to this question. Moreover, we studied the
association between the perceived vulnerability of each task type

Task Interruption in So�ware Development Projects EASE’18, June’18, Christchurch, New Zealand

11%
6%

16%
26%
28%
37%
46%

62%
61%
39%
29%
28%
17%
9%

27%
32%
46%
45%
44%
46%
45%

Programming (bug fixing)
Programming (refactoring)

Testing

Architecture Design

UI Design
Deploying a Feature

Documentation
100 50 0 50 100

Percentage

Response Low Moderate High

Figure 7: Perceived vulnerability of di�erent development tasks to interruption

●

●

0.5

1.0

1.5

2.0

Afternoon Morning
Day Time

∆

DT
● Different

Same

Type Difference

Figure 8: 95% con�dence interval of TD/DT factors interaction
(Scheirer-Ray-Hare test: p=0.01)
and the experience level of respondents. �e results of Spearman’s
rank correlation tests show that the perceived level of vulnerability
ranked by developers does not correlate with their experience level
(e.g. Test: rho= 0.13, p= 0.78).

Considering the impact of priority change (Finding2−1), switch-
ing to a task with a higher priority makes the suspension period
for programming tasks signi�cantly longer than testing tasks (i.e.
∆proд > ∆test , p=0.002). Our survey responses also re�ect the
perceived negative impact of priority change requests on devel-
opers’ productivity. 111 (84%) participants (strongly) agreed with
the disruptiveness of unplanned and immediate interruptions such
as priority change requests, as in: “Unplanned requests like high-
priority defect �xes don’t give me time to save my mental state into
the code or the documentation […] the less likely I can return easily”.
Conversely, compared to programming tasks, testing tasks are more
vulnerable to context and type switching (Figure 6a-c), as stated
by one of our survey participants: “As testing can take a di�erent
type of mindset than a typical development phase, if switching occurs
at mid-task collecting thoughts to return to the task’s context can be
disruptive and time-consuming”.

Practitioner’s corner 2: Due to the problem-solving nature of
programming and testing tasks, and knowing that human short-
term memory is severely limited [5, 35] and cannot accommodate
a large number of items, we recommend practitioners minimize
switching and interrupting programming and testing tasks. Fur-
ther, considering that testing tasks are more vulnerable to context-
switching than programming, architecture, and UI design tasks,
we propose that it might be more e�cient if testers minimize their
project switches or they respond to fewer context-switching re-
quests.

4.3 RQ3- Two-way Impact
We consider cross-factor correlations to assess the relationship
strength among iv1−8. Since all of the independent variables of
our repository analysis are recorded in a binary format, the Phi
coe�cient test is used to determine the degree and the strength of
association between these variables. We then analyze the two-way
interaction of these factors on the disruptiveness of interruptions
in so�ware development tasks (see Figure 8). �e gray-highlighted
cells in Table 4 show the correlation and the interaction between
each pair of factors, and the coloured circles denote the strength of
these correlations.

Finding 3−1: �e Phi correlation tests show that for all of
the task types studied, there is a signi�cant positive correlation
(ϕ >0.50, df=1, χ2 >10.8, p <0.001) between type di�erence and
interruption type factors. �is implies that self-initiated task switch-
ings are mainly associated with a change in the task type. Moreover,
in all task types except testing, context switching and experience
level variables are negatively correlated with the task level (CS:
ϕ ≤ −0.64, df=1, χ2 >10.8, p < 0.001; EL: ϕ ≤ −0.80, df=1,
χ2 >10.8, p < 0.001), indicating that for more experienced de-
velopers task or context switching are usually high-level tasks.

Finding 3−2: Regarding the interruption timing, there is a sig-
ni�cant positive correlation between interruption type and daytime
variables for programming, testing, and UI design tasks (ϕ ≥ 0.52,
p < 0.001). �is implies self-initiated interruptions usually happen
in the morning. In addition, self-interruptions are associated with
interruptions characterized by a priority change (ϕ ≤ −0.53).

Finding 3−3: Table 4 (row TD-DT) shows the interaction be-
tween type change and daytime variables signi�cantly (i.e. SRH
tests) impacts both disruptive factors of programming and test-
ing tasks and suspension period of UI task interruptions. For all
these three task types, the 〈10, 01〉 (i.e. 〈 di�erent type/morning,
same type/a�ernoon〉) combination negatively impacts the suspen-
sion period and for programming and testing tasks the 〈00, 11〉 (i.e.
〈di�erent type/a�ernoon, same type/morning〉) negatively impacts
the nested interruption parameters.

Finding 3−4: �e interaction between task level and type dif-
ference variables signi�cantly impacts the disruptiveness of pro-
gramming and UI interruptions. �is interaction is more disruptive
when the task switching is characterized as 〈main-task/di�erent
type, sub-task/same type〉).

Finding 3−5: While experience level alone does not make any
signi�cant di�erence on the disruptiveness of programming tasks
(Tables 2, p>0.05), when it interacts with type di�erence, interruption
type, or priority change these variables signi�cantly impact inter-
ruptions to this task type. For example, 〈01, 01〉 = 〈less exp/self-
int, more exp/external-int〉 negatively impact programming task
interruptions. Likewise, context switching alone does not impact
interruptions in testing tasks, but its interaction with type di�erence,
interrutption type, or priority change does.

Discussion 3−1: We applied Spearman’s rank test on survey
responses to questions about the disruptiveness of various inter-
ruptions characteristics (see Figure 5). �e results reveal that there
is a weak correlation between context and type switching variables
(i.e. CS/TD: rho=0.2, p=0.04). �is shows that respondents who
rated context switching as a disruptive interruption factor, did so
for the type switching factor: “Changing a task type is disruptive
if it made me change environment e.g. Launch di�erent servers”.
Spearman’s rank tests also show a weak correlation between type

EASE’18, June’18, Christchurch, New Zealand Zahra Shakeri Hossein Abad, Ken Barker, Oliver Karras, Kurt Schneider, and Mike Bauer

Table 4: RQ3- Two-way factorial Scheirer-Ray-Hare Test. [CS]: Context Switching, [TD]: Type Di�erence, [IT]: Interruption Type, [DT]:
Daytime, [PC]: Priority Change, [EL]: Experience Level, [TL]: Task Level, [TS]: Task Stage.

Architecture Programming Test UI Deployment
Pairs ϕ ∆ |w | ϕ ∆ |w | ϕ ∆ |w | ϕ ∆ |w | ϕ ∆ |w |

CS-EL -0.42 y y -0.79..l y 0.001 y -0.90..l y y y y y y y y y y y y -0.80..l y y
CS-TL -0.64..l y y -0.80..l y -0.13 y -0.91..l y y y y y y y y y y y y -0.90..l y y
CS-TD -0.11 y y -0.02 -0.33 1e-3 〈10, 01〉 -0.62..l y -0.84..l y y
CS-IT -0.05 y y -0.10 -0.21 0.02 〈10, 01〉 -0.10 y -0.56..l y y
CS-PC -0.76..l y y -0.36 0.04 〈10, 01〉 -0.46 0.02 〈10, 01〉 -0.24 y -0.48 y y
CS-DT -0.72..l y y -0.10 y -0.14 y -0.49 y y y y y y y y y y y y -0.31 y y
CS-TS -0.42 y y -0.44 y -0.36 y -0.12 y y y y y y y y y y y y -0.83 y y

EL-TL -0.80..l y y -0.98..l -0.10 -0.99..l y -0.84..l y y
EL-TD -0.78..l y y -0.47 0.00 〈00, 11〉 -0.38 -0.28 0.03 〈11, 00〉 y -0.59..l y y
EL-IT -0.48 y y -0.63..l 0.01 〈01, 10〉 -0.53..l 0.01 〈00, 11〉 -0.39 y -0.36 y y
EL-PC -0.30 y y -0.77..l 0.02 〈01, 10〉 0.01 〈01, 10〉 -0.11 -0.59..l y -0.25 y y
EL-DT -0.59..l y y -0.27 y -0.70..l y -0.63..l y y y y y y y y y y y y -0.42 y y
EL-TS -0.50..l y y -0.25 y -0.62..l y -0.36 y y y y y y y y y y y y -0.78..l y y

TL-TD -0.47 y y -0.39 4e-4 〈01, 10〉 0.01 〈01, 10〉 -0.23 -0.28 0.02 〈01, 10〉 y -0.63..l y y
TL-IT -0.55..l y y -0.23 0.003 〈00, 11〉 -0.22 -0.40 0.04 〈00, 11〉 y -0.43 y y
TL-PC -0.28 y y -0.73..l 0.03 〈00, 11〉 -0.29 -0.60..l y -0.39 y y
TL-DT -0.51..l y y -0.15 y -0.10 y -0.66..l y y y y y y y y y y y y -0.22 y y
TL-TS -0.32 y y -0.31 y -0.33 y -0.41 y y y y y y y y y y y y -0.63..l y y

TD-IT -0.54..l y y -0.82..l 3e-4 〈00, 11〉 -0.74..l -0.73..l y -0.89..l y y
TD-PC -0.05 y y -0.69..l -0.10 0.01 〈11, 00〉 -0.60..l y -0.61..l y y
TD-DT -0.01 y y -0.36 0.02 〈10, 01〉 3e-4 〈00, 11〉 -0.14 0.01 (10, 01) 0.02 〈10, 01〉 -0.28 0.01 〈10, 01〉 y -0.24 y y
TD-TS -0.27 y y -0.20 -0.55..l 0.02 〈11, 00〉 -0.64..l y -0.91..l y y

IT-PC -0.21 y y -0.76..l y -0.53..l y -0.94..l y y y y y y y y y y y y -0.61 y y
IT-DT -0.10 y y -0.63..l 0.02 〈00, 11〉 -0.52..l -0.83..l y -0.15 y y
IT-TS -0.31 y y -0.41 y -0.36 y -0.86..l y y y y y y y y y y y y -0.73..l y y

PC-DT -0.50..l y y -0.62..l y -0.16 y -0.78..l y y y y y y y y y y y y -0.63..l y y
PC-TS -0.35 y y -0.10 -0.47 0.01 〈10, 01〉 -0.85..l y -0.59..l y y

DT-TS -0.36 y y -0.41 y -0.54..l y -0.68..l y y y y y y y y y y y y -0.52..l y y

l : 0.50 ≤ ρ < 0.65, ……….l : 0.65 ≤ ρ < 0.80, ………..l : ρ ≥ 0.80, y y y y y: No interaction
l : −0.65 < ρ ≤ −0.50, …..l : −0.80 < ρ ≤ −0.65, …..l : ρ ≤ −0.80

di�erence (TD) and each of interruption type (IT) and task stage
(TS) factors (TD/TS: rho= 0.19, p=0.04; TD/IT: rho=0.22, p=0.02),
as in: “the disruptiveness of type switching depends on if I reached a
good stopping point before the switch or not […]”. We found there is
a correlation between participants’ rating to the disruptiveness of
context switching (CS) and interruption type (IT) factors (CS/IT:
rho=0.37, p=1e-7). Similar to the results of our retrospective in-
teraction analysis, respondents who rated context switching as
a disruptive factor found external interruptions more disruptive
than self-interruptions: “typically the interruptions that come from
others are longer reaching - o�en it means that my skills are needed
elsewhere, and so I need to switch tasks or projects for a more extended
period, which adds more items to my cognitive stack”.

Discussion 3−2: We propose a set of correlation and interaction
pa�erns that can be used to interpret developers’ task switching be-
haviour and to investigate the cross-factor impact of task switching
characteristics. We present these pa�erns as:

Correlation Pa�erns: 〈T , (ıνi , ıνj),l 〉, where i and j ∈ {1, 2, ..., 8}
and denote two distinct interruption characteristics and
the color of l presents the direction and the strength of
the association between these characteristics. For instance,
〈Programming, (CS,TL), l 〉 indicates there is a strong
negative association between the context switching and
task level variables in programming tasks’ interruptions.

Interaction Patterns:
〈(ıνi , ıνj), (αβ, ᾱ β̄),∆/|w |T 〉

, which implies
the interaction between two distinct interruption char-
acteristics ıνi and ıνj with the values of α and β (i.e.
α , β ∈ {0, 1}) negatively impacts ∆ and/or |w | of task T ’s
interruptions. For instance,

〈(TD, PC), (11, 00),∆T est
〉

in-
dicates that (di� type/same priority, same type/di� priority)
signi�cantly impact interruptions of testing tasks and neg-
atively impact their suspension period.

�ese pa�erns along with the detailed information presented in
Table 4, can be used to guide decision-making and forecasting the
consequences of task switching decisions.

Practitioner’s corner 3: While there are various combinations
of factors which can impact the disruptiveness of interruptions in
a negative way, the results of this section do not exactly prove that
interruptions are always disruptive. �ere are circumstances where
task switching or interruptions can boost developers’ productivity,
as stated by one of our survey respondents: “Learning takes time.
Sometimes I learn basics for a task then I leave it for the next day which
makes me mentally prepared for the task. Or, if a team member asks
me a question about a portion of a feature which they are working on,
that o�en gives me clarity about what I am working one”. We propose
that task switching is a skill and not an obstacle to work. Designing
the development processes in a way to be resilient to interruptions
can mitigate the risk of unplanned and disruptive interruptions.
For instance, having frequent, small commits help a team keep the
amount of work that they have not yet submi�ed always very small.
Mapping each commit to one discrete change to the source code
(e.g. refactoring, a failing test, or a TDD cycle) and encoding all of
developers’ knowledge about the code into the code itself (e.g. by
extracting methods and renaming methods and variables to re�ect
their meaning) help reduce the cognitive cost of unavoidable task
switching and interruptions occur to programming tasks.

5 THREATS TO VALIDITY
Although our longitudinal study used data collected from a single
company we argue that our �ndings generalize. We tried to mit-
igate this risk by implementing our repository study on a fairly
large dataset including various projects from di�erent business
domains and employees from di�erent levels of experience. Our
data collection and preparation pose another threat to the validity

Task Interruption in So�ware Development Projects EASE’18, June’18, Christchurch, New Zealand

of our results because identifying the interruption type (i.e. self
and external) and temporal stage of tasks (i.e. early and late) is not
straightforward. �e pilot studies we conducted before our main
data collection phase helped address this risk. Additionally, the
retrospective dataset associated with each employee was reviewed
by at least two hired RA’s and the �rst author of the paper. To
evaluate the reliability of our decisions for independent variables
that have been recorded manually, we used the Cohen’s Kappa
statistic, which calculates the degree of agreement between two
evaluators. �e calculated Kappa value was 0.87, which shows sig-
ni�cant agreement according to Landis and Koch [18]. In regard to
survey results, we pilot tested the survey questions with three so�-
ware developers to mitigate the risk of misunderstanding questions.
However, the questions still require participant interpretation. We
mitigate this risk by adding a comment space for each question
and asked respondents to clarify their response or discuss other
aspects of the question of they desired. �e survey population could
be biased towards a speci�c population so the generalizability of
our survey results may have intrinsic limits. We mitigate this by
distributing our survey to a large number of potential respondents
with di�erent levels of so�ware development experience and from
various countries (e.g. Germany, Netherland, Sweden, Hungary,
USA, New Zealand, and Canada).

6 CONCLUSION AND IMPLICATIONS
Interruption, as a form of task switching or sequential multitasking,
is an inherent part of so�ware development tasks. Not all of the
interruptions should be counted as waste because in some speci�c
cases task switching is unavoidable and can actually increase de-
velopers’ productivity. Using a mixed-methods study including
a retrospective analysis and a survey, we studied the disruptive
impact of various interruption characteristics on development tasks
interruptions. We found that the problem-solving nature of pro-
gramming and testing tasks make them more vulnerable to interrup-
tions compared to architecture and UI design tasks. Interestingly,
we found self-interruptions negatively impact the disruptiveness
of interruptions in all types of development tasks. However, the
survey responses reveal that developers seem to believe external-
interruptions are more vulnerable than self-interruptions. We also
provided a set of actionable recommendations for project managers
and practitioners which can be used as a mean to guide decision-
making and forecasting the consequences of task switching deci-
sions in so�ware development teams.

We suggest that research in multitasking and task interruptions
in the area of so�ware engineering focus on measuring and char-
acterizing the cost of task switching and interruptions. As the
di�erences between our repository analysis and survey data reveal
and as supported by recent practical studies (see [22, 23, 37]), the
disruptiveness of task switching is most likely to be a�ected by the
context in which the switching occurs. As one of the respondents
said: “[…] If someone is working on the same project as I am and we
can exchange ideas, that can be a productive task switching. It’s also
productive for more �re-drill type situations, like fast bug triage.”

REFERENCES
[1] Zahra Shakeri Hossein Abad, , Guenther Ruhe, and Mike Bauer. 2017. Task Interruptions in

Requirements Engineering: Reality versus Perceptions!. In Requirements Engineering Confer-
ence (RE), 2017 IEEE 25th International. IEEE, 6–15.

[2] Zahra Shakeri Hossein Abad, Guenther Ruhe, and Mike Bauer. 2017. Understanding Task
Interruptions in Service Oriented So�ware Development Projects: An Exploratory Study. In
Proceedings of the 4th International Workshop on So�ware Engineering Research and Industrial
Practice (SER&IP ’17). IEEE Press, 34–40.

[3] Zahra Shakeri Hossein Abad, Alex Shymka, Jenny Le, Noor Hammad, and Guenther Ruhe.
2017. A Visual Narrative Path from Switching to Resuming a Requirements Engineering Task.
In Requirements Engineering Conference (RE), 2017 IEEE 25th International. IEEE, 442–447.

[4] Rachel F. Adler and Raquel Benbunan-Fich. 2013. Self-interruptions in Discretionary Multi-
tasking. Computers in Human Behavior 29, 4 (2013), 1441 – 1449.

[5] Erik M Altmann and J Gregory Tra�on. 2002. Memory for Goals: An Activation-based Model.
Cognitive science 26, 1 (2002), 39–83.

[6] John R Anderson. 1990. Cognitive Psychology and Its Implications. WH Freeman/Times Book-
s/Henry Holt & Co.

[7] John R Anderson and Christian J Lebiere. 2014. �e Atomic Components of �ought. Psychology
Press.

[8] Jelmer P Borst, Niels A Taatgen, and Hedderik van Rijn. 2010. �e Problem State: A Cogni-
tive Bo�leneck in Multitasking. Journal of Experimental Psychology: Learning, Memory, and
Cognition 36, 2 (2010), 363.

[9] Jelmer P. Borst, Niels A. Taatgen, and Hedderik van Rijn. 2015. What Makes Interruptions
Disruptive?: A Process-Model Account of the E�ects of the Problem State Bo�leneck on Task
Interruption and Resumption. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems (CHI ’15). ACM, 2971–2980.

[10] Jan Chong and Rosanne Siino. 2006. Interruptions on so�ware teams: a comparison of paired
and solo programmers. In Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work. ACM, 29–38.

[11] Sten Erik Clausen. 1998. Applied Correspondence Analysis: An Introduction. Vol. 121. Sage.
[12] Luis C Cruz, Heider Sanchez, Vı́ctor M González, and Romain Robbes. 2017. Work fragmen-

tation in developer interaction data. Journal of So�ware: Evolution and Process 29, 3 (2017).
[13] Mary Czerwinski, Edward Cutrell, and Eric Horvitz. 2000. Instant messaging: E�ects of rele-

vance and timing. In People and computers XIV: Proceedings of HCI, Vol. 2. 71–76.
[14] Rico Fischer and Franziska Plessow. 2015. E�cient multitasking: parallel versus serial pro-

cessing of multiple tasks. Frontiers in psychology 6 (2015).
[15] Victor M. González and Gloria Mark. 2004. Constant, Constant, Multi-tasking Craziness: Man-

aging Multiple Working Spheres. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’04). ACM, 113–120.

[16] Ioanna Katidioti, Jelmer P. Borst, Marieke K. van Vugt, and Niels A. Taatgen. 2016. Interrupt
me: External Interruptions are Less Disruptive �an Self-interruptions. Computers in Human
Behavior 63, Supplement C (2016), 906 – 915.

[17] Andrew J Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collocated so�ware
development teams. In So�ware Engineering, 2007. ICSE 2007. 29th International Conference on.
IEEE, 344–353.

[18] J Richard Landis and Gary G Koch. 1977. �e measurement of observer agreement for cate-
gorical data. biometrics (1977), 159–174.

[19] Gloria Mark, Victor M. Gonzalez, and Justin Harris. 2005. No Task Le� Behind?: Examining
the Nature of Fragmented Work. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’05). ACM, 321–330.

[20] Daniel C. McFarlane and Kara A. Latorella. 2002. �e Scope and Importance of Human Inter-
ruption in Human-computer Interaction Design. Hum.-Comput. Interact. 17, 1 (2002), 1–61.

[21] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz. 2017. �e Work Life
of Developers: Activities, Switches and Perceived Productivity. IEEE Transactions on So�ware
Engineering PP, 99 (2017), 1–1.

[22] Andre N Meyer, Laura E Barton, Gail C Murphy, �omas Zimmermann, and �omas Fritz.
2017. �e Work Life of Developers: Activities, Switches and Perceived Productivity. IEEE
Transactions on So�ware Engineering (2017).

[23] André N Meyer, �omas Fritz, Gail C Murphy, and �omas Zimmermann. 2014. So�ware
developers’ perceptions of productivity. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of So�ware Engineering. ACM, 19–29.

[24] André N. Meyer, �omas Fritz, Gail C. Murphy, and �omas Zimmermann. 2014. So�ware De-
velopers’ Perceptions of Productivity. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of So�ware Engineering (FSE 2014). ACM, 19–29.

[25] Christopher A Monk, Deborah A Boehm-Davis, and J Gregory Tra�on. 2002. �e a�entional
costs of interrupting task performance at various stages. In Proceedings of the human factors
and ergonomics society annual meeting, Vol. 46. SAGE Publications Sage CA: Los Angeles, CA,
1824–1828.

[26] Christopher A Monk, Deborah A Boehm-Davis, and J Gregory Tra�on. 2002. �e A�entional
Costs of Interrupting Task Performance at Various Stages. In Proceedings of the human factors
and ergonomics society annual meeting, Vol. 46. SAGE Publications Sage CA: Los Angeles, CA,
1824–1828.

[27] Michael Boyer O’leary, Mark Mortensen, and Anita Williams Woolley. 2011. Multiple team
membership: A theoretical model of its e�ects on productivity and learning for individuals
and teams. Academy of Management Review 36, 3 (2011), 461–478.

[28] Chris Parnin. 2010. A Cognitive Neuroscience Perspective on Memory for Programming Tasks.
In In the Proceedings of the 22nd Annual Meeting of the Psychology of Programming Interest
Group (PPIG).

[29] Chris Parnin and Spencer Rugaber. 2011. Resumption Strategies for Interrupted Programming
Tasks. So�ware �ality Journal 19, 1 (2011), 5–34.

[30] John Rieman. 1993. �e Diary Study: A Workplace-oriented Research Tool to Guide Labora-
tory E�orts. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in
Computing Systems (CHI ’93). ACM, 321–326.

[31] Dario D Salvucci and Niels A Taatgen. 2010. �e Multitasking Mind. Oxford University Press.
[32] Dario D. Salvucci, Niels A. Taatgen, and Jelmer P. Borst. 2009. Toward a Uni�ed �eory of the

Multitasking Continuum: From Concurrent Performance to Task Switching, Interruption, and
Resumption. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’09). ACM, 1819–1828.

[33] Gregory Schraw, Michael E Dunkle, and Lisa D Bendixen. 1995. Cognitive Processes in Well-
de�ned and Ill-de�ned Problem Solving. Applied Cognitive Psychology 9, 6 (1995), 523–538.

[34] K. J. Stol, P. Ralph, and B. Fitzgerald. 2016. Grounded �eory in So�ware Engineering Re-
search: A Critical Review and Guidelines. In 2016 IEEE/ACM 38th International Conference on
So�ware Engineering (ICSE). 120–131.

EASE’18, June’18, Christchurch, New Zealand Zahra Shakeri Hossein Abad, Ken Barker, Oliver Karras, Kurt Schneider, and Mike Bauer

[35] John Sweller. 1988. Cognitive Load During Problem Solving: E�ects on Learning. Cognitive
science 12, 2 (1988), 257–285.

[36] Alexey Tregubov, Barry Boehm, Natalia Rodchenko, and Jo Ann Lane. 2017. Impact of Task
Switching and Work Interruptions on So�ware Development Processes. In Proceedings of the
2017 International Conference on So�ware and System Process (ICSSP 2017). ACM, 134–138.

[37] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. Devanbu, and V. Filkov. 2016.
�e Sky Is Not the Limit: Multitasking Across GitHub Projects. In 2016 IEEE/ACM 38th Inter-
national Conference on So�ware Engineering (ICSE). 994–1005.

	Abstract
	1 Introduction
	2 Background
	2.1 Terms and Concepts
	2.2 Related Work

	3 Methods
	3.1 Study 1: Retrospective Analysis
	3.2 Study 2: User Survey
	3.3 Conceptual Framework
	3.4 Research Questions (RQs)
	3.5 Data Analysis

	4 Results
	4.1 RQ1- Task-specific Vulnerability
	4.2 RQ2- Comparative Vulnerability
	4.3 RQ3- Two-way Impact

	5 Threats to Validity
	6 Conclusion and Implications
	References

