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3.2 Color variance of Update Areas

As described in the previous section, Update Areas of the existing attacks are set
using simple rectangles. However, it is natural to determine the area by consider-
ing the color information of the image because it determines the perturbation to
be added. Therefore, we focus on the color variance of Update Areas. As a metric
to express the color variance in divided areas of an image, Intra-Cluster Variation
(ICV) [5] is proposed. ICV is calculated based on the following equation:

ICV =
1

# ~S

∑
s2S̃

√∑
p2s(I(p) � µ(s))2

jsj
, (2)

where ~S is the set of image segmentations. In this paper, it refers to the set of all
Update Areas used in an attack. s 2 ~S denotes a single Update Area, and p 2 s
denotes a pixel. I(p) is the value of the pixel p in the LAB color space3 and µ(s)
is the average value in the LAB color space within a single Update Area. # ~S is
the number of Update Areas and jsj is the number of pixels in a single Update
Area. Smaller ICV indicates smaller color variance in each Update Area.

3.3 Compactness of Update Areas

Furthermore, considering that existing attacks use rectangles to set Update Ar-
eas, we focus on the compactness of Update Areas. The compactness (CO) [24]
is a metric calculated by dividing the size of the segments by that of a circle
with the same perimeter length. The following equation defines this:

CO =

∑
s2S̃ Q(s) � jsj∑

s2S̃ jsj
, Q(s) =

4πjsj
jR(s)j2

, (3)

where jR(s)j is the perimeter length of the Update Areas (number of pixels
on the boundary). Higher CO indicates more centrally clustered Update Areas.
We examined ICV and CO and attack success rates for various Update Areas
construction in Section 3.5.

3.4 Superpixel calculated by SLIC

Superpixel is a set of pixels that are close in color and position. They have
applications in object detection [30], semantic segmentation [16], and depth es-
timation [7]. Dong et al. proposed a white-box adversarial attack that adds the
same perturbation to each superpixel to avoid disrupting the local smoothness
of a natural image [14]. We use superpixels to improve the efficiency of black-
box adversarial attacks. To the best of our knowledge, no black-box adversarial
attacks that apply superpixels have been proposed. Various methods have been
proposed for computing superpixels. We use one of the most popular methods:
3 LAB color spaces in this paper refer to CIELAB (L, a*, b*) color space.
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we use 5,000 images randomly sampled from the ImageNet dataset, and the
allowed perturbation size is set to ϵ = 4/255. We adopted versatile search, a new
search method proposed in Section 4.2. We examine attack success rates at the
maximum iterations T = 500 for each Update Area construction. The attack
success rate is calculated as follows: (number of misclassified images after the
attack) / (total number of images), where the higher the attack success rate,
the more powerful the attack. The seed value is fixed at 0. We used a CPU:
Intel(R) Xeon(R) Gold 5220R CPU@2.20GHz�2, GPU: Nvidia RTX A6000,
RAM:768GB. The results are shown in Fig. 1.

Each point in Fig. 1 represents the values of CO and ICV for different Update
Area construction. The numerical values represent the attack success rate at the
point. The horizontal axis represents the value of CO, and the right side indicates
that more centrally clustered Update Areas are constructed. The vertical axis
represents the value of ICV, where the upper side indicates that Update Areas
with lower color variance are constructed. Note that the same Update Areas are
constructed for some parameters of α, and the points with equal ICV, CO, and
attack success rates coincided with each other. For some representative points,
the Update Areas generated by the SLIC algorithm are shown in different colors.
This result indicates that it is effective to set Update Areas that are compact
and have a low color variance.

4 Superpixel Attack

Based on the analysis in Section 3, we consider applying superpixels, which
achieve a good balance between color variance and compactness, to black-box
adversarial attacks. In this section, we describe the construction of Update Ar-
eas using superpixels (Section 4.1) and a new search method called versatile
search (Section 4.2). We propose a novel attack method called Superpixel At-
tack that sets Update Areas using superpixels and performs versatile search. An
overview of Superpixel Attack is shown in Fig. 2, and the pseudo-code is shown
in Algorithm 1.

4.1 Update Areas using superpixels

Below, we describe the construction of Update Areas using superpixels. Inspired
by existing attacks, Update Areas are set using a few segments of superpixels
at an early stage and many segments of superpixels as the attack progresses.
Specifically, the segment ratio r is given and superpixels S are computed follow-
ing the maximum number of segmentations n = rj (j = 1, 2, . . . ). Let S be the
set of Update Areas constructed for each maximum number of segments n. The
original image xorg is divided into superpixels S for each RGB color channel
f1, . . . , Cg, which are set as Update Areas S = S � f1, . . . , Cg. Note that the
maximum number of superpixel segments n is not always equal to the number
of superpixels computed #S in the SLIC algorithm employed in this study. The
segment ratio is set to r = 4 based on pre-examination. We set α = 10 and force
the areas to be connected.
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Table 1. Comparison experiments with baselines

100 iter Attack Success Rate (%)
source Architecture Parsimon Square SignH AccSignH Superpixel diff

Wong[29] ResNet-50 48.32 49.10 50.86 49.48 53.86 3.00
Engstrom[15] ResNet-50 42.40 41.68 42.92 42.08 45.26 2.34
Salman[23] ResNet-50 41.24 40.42 41.98 41.06 44.44 2.46

Salman ResNet-18 52.08 51.50 52.58 52.06 56.06 3.48
Salman WideResNet-50-2 36.84 35.64 37.82 36.54 39.84 2.02

PyTorch1 ResNet-50 33.92 47.56 50.08 38.80 47.52 -2.52
Debenedetti[12] XCiT-S12 31.72 30.66 32.36 31.64 33.86 1.50

Debenedetti XCiT-M12 30.36 29.38 31.06 30.14 32.84 1.78
Debenedetti XCiT-L12 30.12 29.58 30.66 29.94 32.32 1.66
Singh[25] ViT-S+ConvStem 31.16 30.10 31.40 30.92 33.48 2.08

Singh ViT-B+ConvStem 27.12 26.40 27.56 26.68 29.22 1.66
Singh ConvNeXt-T+ConvStem 30.52 29.76 30.64 30.04 32.78 2.14
Singh ConvNeXt-S+ConvStem 29.26 28.46 29.72 28.98 31.34 1.62
Singh ConvNeXt-B+ConvStem 26.90 26.20 27.38 26.82 28.86 1.48
Singh ConvNeXt-L+ConvStem 25.36 24.82 25.94 25.34 26.94 1.00
Liu[18] ConvNeXt-B 26.48 25.88 26.84 26.44 28.36 1.52

Liu ConvNeXt-L 25.08 24.26 25.78 24.90 26.88 1.10
Liu Swin-B 26.86 26.06 27.20 26.74 28.88 1.68
Liu Swin-L 24.16 23.36 24.62 23.80 26.06 1.44

1,000 iter Attack success rate (%)
source Architecture Parsimon Square SignH AccSignH Superpixel diff
Wong ResNet-50 56.62 56.62 52.46 50.34 59.96 3.34

Engstrom ResNet-50 48.92 48.16 45.10 44.12 51.84 2.92
Salman ResNet-50 46.96 46.70 44.06 43.08 50.16 3.20
Salman ResNet-18 58.60 58.72 54.92 54.26 61.98 3.26
Salman WideResNet-50-2 42.94 42.22 39.66 38.32 44.86 1.92
PyTorch ResNet-50 72.04 84.64 80.80 55.80 87.28 2.64

Debenedetti XCiT-S12 37.44 36.48 33.74 32.96 39.66 2.22
Debenedetti XCiT-M12 36.04 35.10 32.70 31.86 37.64 1.60
Debenedetti XCiT-L12 35.32 34.64 32.38 31.52 37.02 1.70

Singh ViT-S+ConvStem 35.50 35.30 32.68 32.44 37.58 2.08
Singh ViT-B+ConvStem 31.02 30.38 28.76 28.20 32.56 1.54
Singh ConvNeXt-T+ConvStem 34.88 34.50 32.24 31.58 37.12 2.24
Singh ConvNeXt-S+ConvStem 33.36 32.80 30.94 30.62 35.28 1.92
Singh ConvNeXt-B+ConvStem 30.78 30.14 28.62 28.24 32.44 1.66
Singh ConvNeXt-L+ConvStem 29.24 28.80 27.30 26.42 30.64 1.40
Liu ConvNeXt-B 30.32 29.76 28.22 27.62 31.94 1.62
Liu ConvNeXt-L 28.92 28.34 26.86 26.40 30.20 1.28
Liu Swin-B 30.88 30.44 28.64 28.08 32.60 1.72
Liu Swin-L 28.18 27.44 25.86 25.32 29.90 1.72

1
https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html
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1000 iterations, which is significant for black-box adversarial attacks. This study
indicates that adjusting the Update Areas according to the image can enhance
the attack success rates.
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