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Abstract. Attributed graph representation has attracted increasing at-
tention recently due to its broad applications such as node classifica-
tion, link prediction and recommendation. Most existing methods adopt
Graph Neural Network (GNN) or its variants to propagate the attributes
over the structure network. However, the attribute information will be
overshadowed by the structure perspective. To address the limitation and
build a link between nodes features and network structure, we aim to
learn a holistic representation from two perspectives: topology perspec-
tive and feature perspective. To be specific, we separately construct the
feature graph and topology graph. Inspired by the network homophily, we
argue that there is a deep correlation information between the network
structure perspective and the node attributes perspective. Attempting
to exploit the potential information between them, we extend our ap-
proaches by maximizing the consistency between structural perspective
and attribute perspective. In addition, an information fusion module is
presented to allow flexible information exchange and integration between
the two perspectives. Experimental results on four benchmark datasets
demonstrate the effectiveness of our proposed method on graph repre-
sentation learning, compared with several representative baselines.

Keywords: Graph representation · Graph convolution networks · Con-
trastive learning · Self-attention mechanism · Semi-supervised learning.

1 Introduction

Attributed graph representation aims to learn low dimensional node representa-
tion by fully exploiting the rich information of topological structure, node fea-
tures, and correlation between them. As typical methods in graph representation
learning, the representation learned by GNNs has been proved to be effective in
achieving the state-of-the-art performance in a variety of graph datasets such
as citation networks [1], social networks [2] and recommended systems [4]. The
underlying graph structure is utilized by GNNs to operate convolution directly
on the graph by passing node features to neighbors, or perform convolution in
the spectral domain using the Fourier basis of a given graph.

⋆ This work was supported in part by the 173 program No. 2021-JCJQ-JJ-0029, the
Shenzhen General Research Project under Grant JCYJ20190808182805919 and in
part by the National Natural Science Foundation of China under Grant 61602013.
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However, some recent studies disclose these GNNs methods tend to suffer
from certain weaknesses of the state-of-the-art GNNs in fusing node features
with network structure. For example, GNNs only perform low-pass filtering on
feature vectors and node representation will become indistinguishable when we
always utilize a low-pass filter, causing the over-smoothing problem [25]. GNNs
also mainly retain the commonality of node features, which ignores the differ-
ence, so that the learned representations of connected nodes become similar [3].
Therefore, separately generating a feature graph and a topology graph for GNNs
is a fundamental problem.

GNNs models are built with a supervised pattern, which require lots of la-
beled nodes for training. Recently, graph contrastive representation learning [13,
15] arouses a growing interest, which seeks to maximize the mutual information
between input and its representation by contrasting positive pairs with negative-
sampled counterparts. For example, [15] learns node representation with graph-
structured data in an unsupervised manner. And a contrastive objective is pro-
posed to maximize the mutual information between local node embedding and
a summary global embedding. [16] considers mutual information in terms of
graphical structure and proposes mutual information between input graphs and
high-level embeddings in a straightforward pattern. [14] performs augmentation
on the input graph to obtain two graph views, and maximize the mutual in-
formation between two graph views. However, these contrastive representation
learning methods propagate feature information over topology graphs and con-
trast node-level embeddings to global ones.

In this paper, we propose a Cross-perspective Graph Contrastive Learning
(CpGCL) for attributed network embedding. We construct a feature graph via
the k-nearest neighbor algorithm and then perform graph convolution operation
over both topology graph and feature graph. Then, with the feature representa-
tion and topology representation, to the best of our knowledge, we are the first
to explore the consistency between feature perspective and topology perspective
with contrastive learning. Finally, the information fusion module is designed to
propagate the potential information and fuse the different perspective vectors.
The major contributions of this paper are summarized as follows.

• Different from existing works on graph contrastive representation learning,
we propose a novel training strategy to exploit the correlation between topol-
ogy structure perspective and node features perspective.

• We develop a cross-perspective propagation-based architecture, which con-
structs feature graph and topology graph separately and performs graph
convolution operation on both feature perspective and topology perspective.
Combined with contrastive learning, heterogeneous information can be ade-
quately fused.

• We conduct extensive experiments to demonstrate the effectiveness of the
proposed method on four benchmark datasets.

We organize the rest of this paper as follows: Section 2 introduces related
background on graph neural network and contrastive learning. Section 3 de-
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scribes our proposed framework and provides motivation of our method. Section
4 reports our experimental results, followed by the conclusion in Section 6.

2 RELATED WORK

Graph neural network. GNNs have been a mainstream strategy to learn
low dimensional node representation and have developed for a wide range of
tasks, which propagate features information over network topology to node em-
bedding. GraphSAGE [17] utilizes several aggregators and recursively aggregate
features with sampled neighbors. Graph attention networks (GAT) [7] improves
GNN with the attention mechanism on sampled neighbor nodes. GraphRNA [18]
considers node attribute as a bipartite graph and advance graph convolutional
networks to a more effective neural architecture. MixHop [12] proposes a graph
convolutional layer that utilizes multiple powers of the adjacency matrix to learn
both first-order and higher-order neighbors.
Contrastive learning. The main idea of contrastive learning is to learn rep-
resentations by contrasting positive and negative samples. Contrastive learning
can be applied to both supervised and unsupervised data and has been shown
to achieve good performance on a variety of vision and language tasks [19]. Con-
trastive learning aims to learn representation by maximizing representation in
different views. DGI [15] and MVGRL [26] propose to learn a global graph-level
embedding and a local node-level embedding, and maximize the global embed-
ding and local embedding. GCA [13] and GRACE [14] design two graph views
by novel data augmentation schemes and maximize the agreement between node
embeddings in these two views. SCRL [20] finds a “target” for the projection of
prototype vectors and utilizes pseudo label using iteratively Sinkhorn algorithm,
then sets up “exchanged problem” to predict.

3 METHODOLOGY

An attributed network is denoted as G = (A,X), where A ∈ Rn×n is the
adjacency matrix of the input network with n nodes and X ∈ Rn×d if the matrix
of node attributes where d is the dimension of the node features. Specifically,
Aij = 1 represents there is an edge between nodes i and j, otherwise, Aij = 0.

Given an attributed network G = (A,X), attributed network embedding
aims to learn a function f : vi → yi that maps each node vi to a low dimensional
representation vector yi. Specifically, we use feature graph and topology graph
to capture the underlying information in feature space and topology space, and
adopt graph convolution over feature graph and topology graph specifically to
aggregate the information (Section 3.1). Then a cross-perspective contrastive
learning module is designed to exploit the consistency of feature information
and topology information (Section 3.2). Afterwards, we introduce an information
fusion module to propagate important information over both two graphs and
integrate a common embedding from two perspectives (Section 3.3). Finally, we
employ a contrastive objective (i.e., a discriminator) that enforces the encoded
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embeddings of each node in the two different perspectives agree with each other
(Section 3.4).

Fig. 1. The framework of CpGCL model. Given an attributed graph G = (A,X),
faeture graph and topology graph are constructed. CpGCL consists of three parts:
Perspective-specific Convolution Module, Cross-perspective Contrastive Learning Mod-
ule and Information Fusion Module.

3.1 Perspective-specific Convolution Module

Merely propagating the feature information over the topology graph may only
perform low-pass filtering on feature vectors and will smooth the difference be-
tween node features. A nature idea is to separately construct a feature graph
and a topology graph, then adopt graph convolution operation over them.

To represent the node with feature perspective, we construct the feature
graph Gf = (Af ,X) via k-nearest neighbour algorithm, where Af is the adja-
cency matrix of feature graph and X is the feature matrix of graph. Concretely,
we calculate the similarity matrix S ∈ Rn×n with cosine similarity formula:

Sij =
xi · xj

|xi| · |xj |
, (1)

where Sij is the similarity between node feature xi and node feature xj . Then
we choose top k similar node pairs for each node and establish edges. Finally,
we obtain the adjacency matrix of feature graph Af .

To extract meaningful information from the feature graph, we adopt graph
convolution over the feature graph. With the input graph (Af ,X) in feature
space, the l-th output layer can be represented as:

f (l) = ReLU(D̂
− 1

2

f ÂfD̂
− 1

2

f f (l−1)W
(l)
f ), (2)

where ReLU is the activation function, Âf = Af+If , D̂f is the diagonal matrix

of Âf , W
(l)
f is the weight matrix of the l-th layer in GCN, f (l) is the last layer

output of GCN in feature perspective.
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As for the topology perspective, we have the topology graph Gt = (At,X),
where At is the adjacency matrix of topology graph and X is the feature matrix.
So we can obtain the last layer output t(l) of GCN in topology perspective in
the same way as in the perspective of feature.

3.2 Cross-perspective Contrastive Learning Module

Contrary to previous works [15, 16] that learn representations by the node-level
to the graph-level contrastive scheme, in CpGCL, we define the contrastive ob-
jective at the node-level and exploit the correlation between feature perspective
and topology perspective.

To be specific, with feature embeddings Vf and topology embeddings Vt,
we employ a contrastive objective that distinguishes the embeddings of the same
node in these two different perspectives from other node embeddings. For any
node vi, its embedding generated in feature perspective, Vf , is treated as the
anchor, the embedding of it generated in topology perspective, t, is treated as
the positive sample, and embeddings of nodes other than Vt in the two perspec-
tives are naturally regarded as negative samples. Formally, we define the critic
θ(f, t) = s(g(f), g(t)), where s is the cosine similarity and g is the non-linear
projection to enhance the expression power of the critic. The projection g is im-
plemented with a two-layer multilayer perceptron (MLP). We define the pairwise
objective for each positive pair (f, t) as

l(Vf , Vt) = log
eθ(fi,ti)/τ

eθ(fi,ti)/τ +
∑

k ̸=i e
θ(fi,ti)/τ +

∑
k ̸=i e

θ(fi,tk)/τ
, (3)

where τ is a temperature parameter, eθ(fi,ti)/τ is the positive pair, eθ(fi,ti)/τ is
the inter-perspective negative pairs and eθ(fi,tk)/τ is the intra-perspective nega-
tive pairs. Therefore, negative pairs come from two sources. Since two perspec-
tives are symmetric, the loss for another perspective can be defined similarly
for l(ti, fi). The overall contrastive objective is defined as the average of two
different forms:

Lc =
1

2N

N∑
i=1

[l(fi, ti) + l(ti, fi)]. (4)

To sum up, CpGCL first constructs feature graph Gf and topology graph Gt sep-
arately. Obtaining feature representation v of Gf and topology representation
t of Gt, we respectively use GNNs encoder to propagate the feature informa-
tion and topology information. Finally, we learn embeddings by maximizing the
agreement between feature representation v and topology representation t.

3.3 Information Fusion Module

In order to exchange the information between feature perspective and topology
perspective, another design goal of CpGCL framework is to propagate critical
information along the network structure and maintain the discriminative features
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in node attributes. Previous work [8] designs a Common-GCN with parameter
sharing strategy to get the embeddings shared in two spaces. Instead, we utilize
the self-attention mechanism [22] to exchange features between perspectives. The
intuition includes two aspects. First, the self-attention mechanism is designed
to learn the importance of two perspectives, without having one perspective
separated from another. Second, the self-attention mechanism can adaptively
obtain one vector for each perspective, so that the information fusion module
can be naturally stacked.

Specifically, given the feature representation Vf and topology representation
Vt, following standard self-attention, we calculate the query vector q and key
vector k for each node,

q1 = VfW
Q, q2 = VtW

Q,

k1 = VfW
K , k2 = VtW

K ,
(5)

where d is the embedding dimension, WQ,WK ∈ Rd×d denotes the transforma-
tion matrices for query vector and key vectors, respectively. Then we fuse the
new node representation V1 and V2 with the following computation,

αi,j =
exp(qik

⊤
j )∑

k∈{k1,k2} exp(qik
⊤)

,

V1 = µ(α1,1Vf + α1,2Vt),

V2 = µ(α2,1Vf + α2,2Vt).

(6)

where α.,. denotes the relative weights of the intermediate features Vf and Vt for
the node representations, and µ is the activation function.

Then we combine these two node representation V1 and V2 to obtain the
common embedding V of two perspectives.

V = (V1 + V2)/2, (7)

3.4 Optimization Objective

To preserve the information from feature perspective and topology perspective,
Vf , Vt and V are concatenated as the final embedding Z. Then we use Z for
semi-supervised classification with a linear transformation and softmax function.
Y

′
is the prediction result and Y

′

ij is the probability of node i belonging to class
j. W and a is the weight and bias of the linear layer, respectively.

Y ′ = (W · Z + b). (8)

Suppose there are T nodes in training set, we adopt cross-entropy loss to measure
the difference between predicted label Y ′

ijand truth label Yij .

Lt =

T∑
i=1

C∑
j=1

YijlnY
′
ij . (9)
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Combining the node classification task and contrastive learning, we have the
following overall objective function:

L = Lt + βLc, (10)

where β is the consistency balancing hyper-parameter.

4 Experimental Analysis

In this section, we conduct extensive experiments to evaluate the effectiveness of
the cross-perspective graph contrastive learning framework for node classification
on attributed graph representation.

4.1 Datasets

For a comprehensive comparison, we use four widely-used datasets, including
ACM [27], Citeseer [21], UAI2010 [23] and Cora to study the performance of
node classification; their detailed statistics is summarized in Table 1. Moreover,
we provide all the data websites in the supplement for reproducibility.

ACM1 contains papers published in KDD, SIGMOD, SIGCOMM, Mobi-
COMM, and VLDB and are divided into three classes (Database, Wireless Com-
munication, Data Mining). The constructed graph comprises 3,025 papers, 5,835
authors, and 56 subjects. Paper features correspond to elements of a bag-of-words
represented of keywords. Citeseer2 consists of 3,312 scientific publications clas-
sified into one of six classes and 4,732 links. Each publication in the dataset is
described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary. UAI20103 contains 3,067 nodes in 19
classes and it has been tested in GCN for community detection. The attribute
dimension of each node is 4,973. Cora4 is a paper citation network, which con-
tains 2,708 papers as nodes and 5,249 citation links as edges. These papers are
divided into seven categories. The attribute of each node is a binary vector of
1,433 dimensions.

Table 1. The statistic of the datasets

Dataset Nodes Edges Classes Features

ACM 3,025 13,128 3 1,870
Citeseer 3,327 4,732 6 3,702
UAI2010 3,067 28,311 19 4,973

Cora 2,708 5,429 7 1,433

1 https://github.com/Jhy1993/HAN
2 https://github.com/tkipf/pygcn
3 http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
4 Cora dataset is available at https://linqs.soe.ucsc.edu/data
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4.2 Baselines

We compare the CpGCL framework with graph representative baselines to verify
the performance.

• DeepWalk [6] is a classical graph embedding method which uses random
walk and skipgram to learn network representations.

• Line [9] preserves the first-order or second-order proximity in the network
by optimizing the carefully designed objective function.

• ChebNet [10] is a spectral-based GCN that uses Chebyshev filters to reduce
computation complexity.

• GCN [5] is a semi-supervised network embedding method that applies av-
erage aggregation in the local neighborhood.

• kNN-GCN [8] uses the sparse k-nearest neighbour graph calulated from
feature matrix as input graph of GCN and represent it as kNN-GCN.

• GAT [7] is a semi-supervised neural network which learn the importance
between nodes and its neighbors and fuse the neighbors to perform node
classification.

• Demo-Net [11] is a degree-specific graph neural network using multi-task
graph convolution for node classification.

• MixHop [12] is a propagation-based method that mixes the node represen-
tation of highter-order neighbours in one graph convolutional layer.

• GRACE [13] is a proposed graph contrastive learning framework. It gener-
ates two graph view and maximize the agreement of node representations of
two views.

• AMGCN [8] exploits the information from both feature space and topology
space. Then it uses the attention mechanism to learn adaptive importance
weights of the embeddings.

• SCRL [20] presents a self-supervised framework to learn a consensus repre-
sentation for attributed graph. It fuses the topology information and node
feature information of the graph.

4.3 Parameters Setting

For all the baseline methods, we use the implementations provided by either
their authors or open-source libraries. By default, we build a 2-layer GCN with
the same hidden layer dimension n ∈ {512, 768} and train our model utilizing
Adam [24] optimizer with learning rate range from 0.0001 to 0.0005. In order to
prevent the over-fitting problem, we set the dropout rate to 0.5. In addition, we
set weight decay ∈ {5e−4, 5e−3}, temperature parameter τ ∈ {0.8, 0.9, 1.0, 1.1}
for contrastive objective and k ∈ {2, ..., 9} for the kNN graphs. The balancing
hyper-parameter is set from 0.7 to 1.0. For fairness, we follow [8] and select
three label rates for the training set (i.e., 20, 40, 60 labeled nodes per class) and
choose 1000 nodes as the test set. The selection of labeled nodes on each dataset
is identical for all compared baselines. We repeatedly train and test our model
for 5 times with the same partition and evaluate the performance of our model
by Accuracy (ACC) and Macro-F1 (F1).
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Table 2. Node classification results(%). (Bold: best; Underline: runner-up)

Dataset ACM Citeseer

L/C 20 40 60 20 40 60

Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk[6] 62.69 62.11 63.00 61.88 67.03 66.99 43.47 38.08 45.15 43.18 48.86 48.01
LINE[9] 41.28 40.12 45.83 45.79 50.41 49.92 32.71 31.75 33.32 32.42 35.39 34.37

ChebNet[10] 75.37 74.93 81.68 81.33 85.78 85.32 69.64 65.91 71.52 68.23 73.21 70.24
GCN[5] 87.64 87.80 88.96 89.02 90.37 90.43 70.30 67.42 72.98 69.66 74.43 71.29

kNN-GCN 78.54 78.14 81.61 81.55 81.94 81.89 61.37 58.83 61.59 59.42 62.46 60.13
GAT[7] 87.47 87.59 88.51 88.47 90.26 90.33 72.53 68.17 73.02 69.59 74.71 70.37

Demo-Net[11] 84.48 84.17 85.64 84.78 86.65 84.09 69.52 67.81 70.39 66.92 71.88 68.24
MixHop[12] 81.08 81.42 82.37 81.09 83.03 82.36 71.40 66.96 71.56 67.47 72.31 69.37
GRACE[13] 89.04 89.00 89.46 89.36 91.08 91.03 71.70 68.14 72.38 68.74 74.20 70.73
AMGCN[8] 90.40 90.43 90.76 90.66 91.40 90.69 73.12 68.44 74.62 69.84 75.56 70.94
SCRL[20] 88.70 88.46 90.70 90.71 91.80 91.83 73.00 68.81 73.80 70.17 75.50 71.86

CpGCL 91.8291.8291.82 91.6891.6891.68 91.9291.9291.92 91.8491.8491.84 92.2092.2092.20 92.1592.1592.15 73.4073.4073.40 70.3070.3070.30 75.9075.9075.90 71.4271.4271.42 76.6076.6076.60 72.8072.8072.80

Dataset UAI2010 Cora

L/C 20 40 60 20 40 60

Metrics ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk[6] 42.15 33.04 50.71 46.24 54.71 46.59 73.22 71.90 75.12 73.88 76.10 74.56
LINE[9] 43.43 37.16 45.83 39.81 50.41 43.71 73.56 72.04 74.84 73.36 75.42 74.28

ChebNet[10] 50.12 33.75 58.18 38.82 59.74 40.77 76.68 75.82 77.56 76.34 78.21 77.24
GCN[5] 49.98 32.96 51.87 33.90 54.53 32.31 77.30 76.53 78.98 77.79 79.83 78.84

kNN-GCN 66.06 52.43 68.74 54.45 71.68 54.82 61.57 58.83 64.59 61.24 67.48 63.28
GAT[7] 56.87 39.59 63.71 45.11 68.47 48.92 78.53 77.38 79.82 78.56 80.71 79.57

Demo-Net[11] 23.71 16.90 30.57 26.64 34.53 29.31 76.40 75.43 77.33 76.82 77.89 76.46
MixHop [12] 61.56 49.23 65.11 53.93 67.71 56.42 72.40 70.88 73.56 72.47 75.31 73.82
GRACE[13] 65.59 48.43 66.71 49.57 68.71 51.49 76.84 75.72 78.26 77.20 79.18 78.22
AMGCN[8] 70.14 55.67 73.17 64.91 74.42 66.08 80.80 79.98 83.57 82.39 84.21 83.17
SCRL[20] 71.90 58.40 73.52 64.70 74.90 66.54 80.60 79.72 84.17 83.28 84.06 83.72

CpGCL 73.7073.7073.70 62.0662.0662.06 74.5074.5074.50 66.4266.4266.42 75.8475.8475.84 68.6268.6268.62 82.5082.5082.50 82.0282.0282.02 85.1085.1085.10 84.4284.4284.42 85.3685.3685.36 84.6084.6084.60

4.4 Node Classification Results

The node classification results are reported in Table 2, where L/C means the
number of labeled nodes per class for training. We have the following observa-
tions.

• Compared with all baselines, the proposed CpGCL generally achieves the
best performance on all datasets with all label rates. Compared with the
best competitor (SCRL), CpGCL improves it by 1.35% and 1.68%for ACC
and F1 respectively across all datasets. The results implicate the effectiveness
of the cross-perspective contrastive learning and information fusion modules.
CpGCL can better capture the difference between nodes and their neighbor
nodes pairs.

• In some situations, the feature graph shows better performance than on
topology graph, such as UAI2010. Comparing with GCN, kNN-GCN and
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GAT, CpGCL achieves substantial improvement on all datasets, which fur-
ther confirms the necessity of the feature graph.

• CpGCL consistently outperforms GRACE on all the datasets, indicating the
effectiveness of cross-perspective contrastive learning in CpGCL, because
CpGCL effectively learns the correlation between feature perspective and
topology perspective.

4.5 Ablation Study

Here, we conduct an ablation study by discarding some of the design choices
shown in Fig.1. The node classification results on ACM, Citeseer, UAI2010, and
Cora are shown in Table 3. In the table, CpGCL - IF means discarding the
information fusion module, CpGCL - CL means CpGCL without the cross-
perspective contrastive learning module and removing the contrastive objective
loss. As we can see from the Table 3, the results of CpGCL are obviously better
than all its variants on all datasets with all labeled rates, verifying that in-
formation fusion module and cross-perspective contrastive learning module are
effective in terms of improving the node representation results for classification.

Table 3. The results of CpGCL and its variants on four datasets.

Dataset Metrices L/C CpGCL CpGCL-IF CpGCL-CL

ACM

ACC
20 91.82 89.95 89.70
40 91.92 89.70 89.50
60 92.20 90.20 90.20

F1
20 91.68 90.10 89.22
40 91.84 90.20 89.47
60 92.15 90.49 90.22

Citeseer

ACC
20 73.40 72.20 72.40
40 75.90 72.70 73.30
60 76.60 74.90 74.70

F1
20 70.30 67.93 68.58
40 71.42 69.46 69.95
60 72.80 71.96 71.43

UAI2010

ACC
20 73.70 69.90 69.30
40 74.50 73.50 73.40
60 75.84 74.40 75.20

F1
20 62.06 59.42 59.31
40 66.42 64.89 64.49
60 68.42 66.56 67.55

Cora

ACC
20 82.50 82.26 80.79
40 85.10 82.42 82.33
60 85.36 82.66 82.88

F1
20 82.02 81.36 81.20
40 84.42 83.20 83.10
60 84.60 83.80 83.70
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4.6 Parameter Sensitivity

We also study the sensitivity of the one major hyper-parameter k-nearest neigh-
bor graph k on ACM and UAI2010 datasets.
Parameter k: We study the impact of the top k neighborhoods in the kNN
graph with k range from 2 to 9. We conduct experiments on ACM and UAI2010
datasets, their accuracies have similar trends. The results are shown in Fig2.
The accuracy witness a climb first, which is followed by a decrease. The reason
is that larger k can provide more useful feature information but too many neigh-
bors will also introduce noisy edges.

(a) ACM (b) UAI2010

Fig. 2. Analysis of parameter k

5 Conclusion

In this paper, we propose a cross-perspective graph contrastive learning frame-
work on the attributed graph, which is able to explore the attribute information
and topology information adaptively. Requiring the embeddings of feature graph
and topology graph, the cross-perspective contrastive learning module is proved
to be effective to learn the consistent information between feature perspective
and topology perspective. To further fuse the information, we introduce the in-
formation fusion module to flexibly exchange and integrate information between
the two perspectives. Experimental results on real-world datasets demonstrate
the superiority of our proposed method on attributed graph representation.
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