
EasyChair Preprint
№ 10472

A Highly Accurate Data Synchronization and
Full-Text Search Algorithm for Canal and
Elasticsearch

Peiyang Wei, Xiaoyu Shi and Gang Zhang

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 30, 2023

1

A Highly Accurate Data Synchronization and Full-
text Search Algorithm for Canal and Elasticsearch

Peiyang Wei

School of Computer Science and
Technology

Chongqing University of Posts and
Telecommunications

School of Software Engineering,
Chengdu University of Information

Technology Chongqing
Chongqing Institute of Green and
Intelligent Technology, Chinese

Academy of Sciences
Chongqing School, University of

Chinese Academy of Sciences
Chongqing, China

E-mail: weipy@cuit.edu.cn

Xiaoyu Shi
Chongqing Institute of Green and
Intelligent Technology, Chinese

Academy of Sciences
Chongqing School, University of

Chinese Academy of Sciences
Chongqing, China

E-mail: xiaoyushi@cigit.ac.cn

Gang Zhang
Center for Fusion Science,

SouthwesternInstitute of Physics,
CNNC, Chengdu, Sichuan
E-mail: zgang@swip.ac.cn

Abstract—Currently, there are numerous thorny issues in
structured data and semi-structured full-text search scheme
with large-scale text nature, like long data synchronization delay,
inconvenient personalized business processing and low
efficiency. To address these issues, this paper proposes an
efficient algorithm based on Canal data synchronization
framework and Elasticsearch full-text search engine. Firstly, we
rewrite the Canal adapter component to obtain the flexible
configuration of business data processing, thereby enhancing
the secondary data processing ability of the framework and
achieving the purpose of improving the efficiency of data
synchronization. Secondly, by recording the synchronization
time of nearby data in Canal framework, the weight of time
series data is gradually decreased by combining with the
exponential weighted average function to highlight the influence
of recent data and present the novelty of data, which can achieve
effective control the synchronization interval and duration by
dynamically and flexibly setting the synchronization trigger
period. Lastly, the Elasticsearch word tokenizer is modified, and
then the configuration of custom expansion words and stop
words dictionary are proposed to filter the query data effectively,
thereby enhancing the query hit rate and accuracy. Extensive
experiments on the data of traditional Chinese medicine
demonstrate that the designed algorithm obtains high data
synchronization efficiency, full text search speed and accuracy.
Hence, the proposed algorithm is a milestone in smart
healthcare.

Keywords—Elasticsearch, Canal, Real-Time Synchronization,
Full Text Search.

I. INTRODUCTION

With the rapid development of cloud computing and
Internet technology, a large amount of structured, semi-
structured and unstructured data are produced in our daily life.
Correspondingly, Synchronization and retrieval of big data on
edge devices, storage devices, mobile devices and various
software have always been the focus of research in the field.
For these different directions, extensive scholars have made
useful exploration and practice.

Zhang et al. [1] propose a series of efficient methods to
perform algorithm/accelerator co-design and co-search for
optimized edge AI search, which demonstrates the proposed
methods on popular edge AI applications (object detection and
image classification), thereby achieving a significant
improvement than previous designed schemes. Farbeh et al.
[2] make a method called Alternating Cache Allocation to
Conduct Higher Endurance (A-CACHE), which improves the
lifetime of frequently-written D-cache by exploiting rarely-
written I-cache. Han et al. [3] present a fault tolerant cache
system of automotive vision processors. The cache system has
the small redundant memory, which decreases the transient
error rates with the proposed mechanism, thereby increasing
the error recovery rate. The above studies mainly focus on data
synchronization, cache and fault tolerance of hardware
devices, which provide a solid foundation for data search and
high-quality applications.

Amato et al. [5] add the transform CNN features into
textual representations and index them with the well-known
full-text retrieval engine Elasticsearch. Bajer et al. [6]
describe the process of using Elastisearch, Logstash and
Kibana (ELK) tool to process IoT data, which expands the
application scope of ELK tool. Shah et al. [7] present a
solution to effectively address the challenges of real-time
analysis using a configurable Elasticsearch search engine.
Dhulavvagol et al. [8] enhance the performance of distributed
processing systems by applying effective shard partitioning,
efficient shard selection techniques and perform the
comparative study analysis of shard selection techniques on
Elastisearch considering precision, MAP, cost measures. Voit
et al. [9] present a system based on Elasticsearch engine,
MapReduce model for the solution of full-text search and data
visualization. Devins et al. [10] enhance the seamless
replicability and interoperability between Elasticsearch and
the Pyserini IR toolkit by competitive bag-of-words first-stage
retrieval baselines for the MS MARCO document ranking task,
both of them are based on the open-source Lucene search
library. Bhatnagar et al. [11] describe the working of open
source tools like ELK, which have been clubbed together to
complete insight and visualization of data. By implementing
these tools, they are performing sentiment analysis of data
taken from social networking blogging service like twitter.
Han et al. [12] use the Flask framework in python to write a

This research is supported in part by National Key Research and
Development Program of China under Grant 2022YFB3305100 and Youth
Innovation Program of CUIT under Grant KYQN202222(Corresponding
author: P. Wei).

2

system for rapid retrieval and visualization of media data by
using MongoDB and Elasticsearch. Meanwhile, Kibana can
be used to visually display and present the data. Zmaranda et
al. [13] perform a comparative evaluation of two popular
open-source DBMSs: MySQL Document Store and
Elasticsearch as non-relational DBMSs, and this comparison
is based on a detailed analysis of CRUD operations for
different amounts of data showing how the databases could be
modeled and used in an application. Kim et al. [14] built a
topic classification index search technology using
Elasticsearch and LDA model. Ahmed et al. [15] design a set
of log monitoring system based on ELK framework, the
system can process any source, any format of data, and
provide real-time analysis, search and monitoring. Zhou et al.
[16] propose a cache optimization model based on HBase and
Redis for image storage. Liu et al. [17] propose a high-
performance memory key-value pair database Redis++.
Zamfir et al. [18] and Kim et al. [21] use the Elasticsearch
framework to achieve optimizing its performance and
querying efficiency, analyzing log data and tracking system
failures, thereby improving its robustness. Ghosh et al. [19]
propose a caching mechanism to reduce response time for the
performance loss in serverless architectures. Li et al. [20]
employ Spark and Elasticsearch to build a log mining
framework based on cloud architecture to solve the problem
of limited performance of large amount of data query analysis.

According to the above literatures, there are few works on
the configurability of data synchronization, the secondary
transformation of business and the optimization of index in the
research on various improvements of data synchronization
and full-text search. Therefore, this paper proposes an
optimized and improved search algorithm with high real-time,
high concurrency based on Canal for data synchronization and
Elasticsearch for inverted index construction. Finally, the
algorithm is deployed in the Multi-dimensional Prescription
Training Platform (MPTP), and then the effectiveness of the
algorithm is proved by the test of high concurrency, multi-user
and large amount of data.

For the rest of our paper, Section II discusses the related
work. Framework and model are introduced in Section III.
Section IV presents the application and test. Lastly, Section V
concludes our paper.

II. RELATED WORK

A. Elasticsearch

Elasticsearch is an open source full-text search and
analysis engine that can store, retrieve, analyze large amounts
of text data in near real time. Moreover, Elasticsearch is
implemented by using Lucene as its core, which can easily
scale to hundreds of servers and handle petabytes of data.
Most importantly, it also has the following characteristics:

a) Convenient configuration and use. Users can create an
index, and then they perform the full-text search, analysis,
sorting and presentation of documents. Structured and
partially semi-structured data types are supported for the
distributed search and aggregate queries；

b) Shard storage and automatic backup. The index is the basic
unit of data storage in the framework when the amount of
data in the index is large, then the data can be split
horizontally to form shards. Meanwhile, the data can be
automatically backed up to form a copy, which could ensure

that the data may not be lost after a server is closed, thereby
ensuring the high availability of the service;

c) Real-time monitoring and rapid response. It is convenient
to obtain data changes in a specified period of time, which
helps users find data anomalies and issues.

Specifically, Elasticsearch also has issues like high
requirements for hardware resources, long time for indexing
and searching, which is the critical points for this paper.

Fig. 1. Diagram of a training platform for formulations.

B. Canal

In general, Canal is an open source database management
system with the superior performance and security, which is
widely utilized in large enterprises and high performance
computing environments. Due to Canal adopting the
incremental log parsing technology, it can synchronize
changes of different data in near real time and pass them to
subsequent business processing. Meanwhile, Canal supports
multiple deployment modes like single point, cluster,
embedded and cloud, which can also choose the appropriate
way to ensure real-time performance and reliability by
corresponding requirements. Consequently, they can satisfy
the requirements of most real-time data synchronization and
data distribution scenarios.

III. FRAMEWORK AND MODEL

Fig. 1 shows the block diagram of the formula science
training platform based on real-time synchronization and full-
text search, which mainly consists of request distribution, data
storage, data synchronization, full text search.

A. Module Explanation

1) Request Dispatching

The request distribution module is centered on the Nginx
network server, which is mainly set up for the system with
large capacity and multi-user concurrent online use. Nginx can
handle different demand types like images, HTTP requests,
full-text retrieval and other responses to improve system
loading speed. Meanwhile, in the face of high concurrency,
load balancing and dynamic content distribution, services can
be enabled to share the request load for improving the
availability and performance of the server.

2) Data Storage

The data storage module consists of three types of storage
services: MySQL database for relational data persistence, FTP
file service for image storage and Redis for caching data.
Among them, MySQL is mainly used to store the structured

3

data information of the platform system and provide basic data
services for the management, application layer of the system.
FTP file service mainly aims at the specific scene of the
application layer of the platform to provide image reading,
loading, storage and other services. In addition, Redis can
improve system access performance through the regular task
hot update mechanism. Furthermore, the frequently accessed
data is stored in Redis to improve the hit rate of request access,
thereby achieving the purpose of effectively optimizing access
speed.

3) Data Synchronism

The data synchronization module is mainly implemented
based on the open source Canal framework. By parsing the
MySQL binlog of the subscribed storage system's main data,
the database change operations are parsed into SQL
statements in time, and then these SQL statements are sent to
the target Elasticsearch for achieving data synchronization.

The main steps of Canal to achieve data synchronization
are as follows:

a) Connecting to the MySQL database of the system's data
storage, it obtains the file name and location of the binlog
to implement the subscription function of the change log;

b) Parse each change in the MySQL database by using the data
in the binlog file. Canal uses a Canal Server with a separate
service process that connects to a MySQL database at one
end and listens for binlog changes. When the database
changes, the Canal Server parses the change operation into
SQL statements and sends them to the Canal Client;

c) When the Canal Client receives the SQL statement, which
sends it to Elasticsearch, thereby allowing for fast indexing
and data synchronization.

In the Canal application of data synchronization, the
specific business requirements of the prescription science’s
training platform, like simplified and traditional Chinese
character processing are optimized and improved with a
purpose to further enhance the efficiency and accuracy of
synchronization. Moreover, The details of the algorithm is
presented in Algorithm I.

4) Full-text Search

The full-text search module uses Elasticsearch for
responding to all kinds of query requests from users by the
system in a timely manner, reaching a near-real-time state and
realizing the full retrieval of business data. However, in terms
of the adaptability of traditional Chinese medicine (TCM)
prescription business, its performance still has room for
optimization. To address this hot issue, this paper conducts an
in-depth study on the underlying principle of Elasticsearch. By
modifying the Elasticsearch index, word segmenter, setting
the black and white list mechanism, this paper formulates a
custom expansion word and stop word dictionary to achieve
further filtering requirements, thereby improving data query
performance. Furthermore, the details of algorithm
optimization is given in Algorithm II.

B. Executing Process Steps

With the platform block diagram in Fig. 1, this paper
shows the execution process based on the data retrieval flow.

step1: Multi-user requests from different types of
terminals like PC and mobile terminals are forwarded by the
Nginx network server.

step2: Forward to the corresponding object by different
request types, Redis is accessed first for business data. If it
fails to hit, MySQL database is accessed again. Meanwhile,
the access information is stored in Redis by the round robin
update mechanism, thereby enhancing the efficiency of
subsequent access. For advanced retrieval requests, we send
them to the Elasticsearch server.

step3: Each type of request response server obtains
relevant resource data and feedback results. Among them,
pictures are loaded by the FTP file server. Hot data of business
information is obtained from Redis, then ordinary data is
responded by MySQL. Moreover, the high-level retrieval
requirements are responded by Elasticsearch.

step4: If Canal detects a change in the MySQL binlog,
which automatically initiates a synchronization operation to
keep the business data consistent with the data in the
Elasticsearch index library.

step5: The Elasticsearch server displays the data
information filtered by the algorithm in the index library.

C. Design of Canal Synchronization Algorithm

There are some issues in TCM, like different forms of
characters, conversion between simplified and traditional
Chinese, meaningless modal particles in traditional Chinese,
scientific calculation of part of business data. Meanwhile,
there are small batch and multi-frequency data update, which
harms the synchronization efficiency. To address the above
issues, this paper optimizes and improves the open source
Canal framework, which makes improvements in monitoring
synchronization interval and replacing adapter components. In
addition, the specific optimization block diagram of Canal
synchronization algorithm is shown in Fig. 2, which sets the
current data obtained from MySQL as Gdata, the timestamp of
the start of synchronization is defined as Ts, the
synchronization data is given as Sdata, then the adapter ISabaptor
is enabled.

1) Monitor synchronization interval

Canal obtains the data Gdata by subscribes from the data
synchronization event triggered through MySQL, while the
timer records the timestamp Ts of the batch data processing
starting for this batch.

Through the exponential weighted average function of
formula (1), the effect of removing noise and smoothing data
can be achieved, then the trend of original data can be easily
described. Moreover, combined with the upcoming data
synchronization cycle, the time period of Elasticsearch
synchronization is dynamically calculated and adjusted to
achieve the rebalance between synchronization speed and
resource consumption.

 1 1 ,t t tv v (1)

where θt is the actual response time at iteration t, vt is the
estimate to replace θt, which is the exponentially weighted
average at iteration t, and β is the weight of vt-1, which is an
adjustable hyper-parameter (0<β<1). Fix to set the
synchronization period as vt.

2) Rewrite the Canal adapter component

By establishing various processing functions to satisfy the
requirements in advance, which enable corresponding
functions in this Batch with business requirements. For
example, processing simplified, traditional Chinese

4

conversion function SimAndComFun, heterogeneous
character function DiffCharFun, removing modal words
function DropModalFun.

By passing the parameter ISabaptor, which determines
whether we add the configuration filter method to perform the
secondary optimization of Canal synchronization.

If the value of ISabaptor is false, the filter would not be
enabled; Otherwise, the filter is enabled, then the processing
functions would be configured by the specific requirements.

Fig. 2. Diagram of the canal synchronization algorithm optimization.

Algorithm I Canal Synchornization Algorithm
Input: Gdata , ISabaptor
Output: Sdata
1 Function Sync_data(Gdata , ISabaptor) :
2 connector.connect()
3 connector.subscribe(".*\\..*")
4 Ts=startSycTimer()

5 while ISabaptor :
7 message = getWithoutAck(Gdata)
8 batchId = message.id()
9 entries = message.entries()
10 for entry in entries :
11 db= entry.schemaName
12 tb = entry.tableName
13 change = entry.storeValue
14 type = change.eventType();
15 for ch in change :
16 SimAndComFun (ch)
17 DiffCharFun(ch)
18 DropModalFun(ch)
19 ComputeFun(ch)
20 id = findId(ch)
20 if type == INSERT do
21 json = toInsertJson(ch,tb,db,id)
22 insertES(json)
23 if type == UPDATE do
24 json = toUpdateJson(ch,th,db,id)
25 updateES(json)
26 if type == DELETE do
27 deleteES(th,db,id)
28 Sdata = ack(batchId)
29 Ts=endSycTimer() - Ts
30 RTs=IndexWeightFun(Ts)
31 SetSynTime(RTs)
Output: Sdata

At the end of the filter function, the cleaned synchronous
data Sdata is returned. Moreover, The critical code for the
synchronization algorithm is depicted in Algorithm I, which
can help researchers implement the system and make related
test experiments.

D. Elasticsearch Dictionary Optimization Algorithm Design

There are structured data and unstructured data, like
pictures and texts in TCM prescription data. Meanwhile, there
are stop words like "hu" "xi" and "Zhi", which do not need to
be involved in retrieval, expansion words composed of proper
nouns and high-frequency words in business data. Therefore,
in view of the above mentioned business requirements, this
paper establishes a custom expansion word segmentation

dictionary and stop word dictionary for Elasticsearch to build
the index, thereby optimizing and addressing the existing
issues. In addition, the specific optimization block diagram is
shown in Fig. 3.

Let the received data be Rmsg, ISf is the text data, Smsg
represents structured data, Fmsg is text data, Wu is word
segmentation word element, Ew represents expansion word
segmentation, Sw is stop word segmentation, Idata is inverted
index.

Fig. 3. Diagram of the elasticsearch dictionary optimization algorithm.

Algorithm II ElasticSearch Dict Algorithm
Input: Rmsg,ISf
Output: Idata
1 function mainFunc(Rmsg, ISf):
2 while ISf:
3 if func == "Sw":
4 file = new File("stopwords")

5 tmpS = getIkSWord(file, response)
7 else if func == "Ew ":
8 file = new File("extwords")
9 tmpE = getIkEWord(file, response)
10 Rmsg = ContactFile(tmpS, tmpE)
11 SWmsg =SplitWords(Rmsg)
12 Idata =ConReverseIndex(SWmsg)
Output: Idata

When using Elasticsearch for full-text search, we need to
index the received data Rmsg. In this case, we also adopt the ISf
flag to determine whether the data is text. For non-text data,
metadata is used to create it. With text data, Fmsg needs to read
data in turn by file operations, and then call custom word
segmenting devices Ew and Sw to perform operations before
word segmentation. After the above operation, the word
segmentation Wu is adopted to construct the inverted index.
Among them, the custom word segmentation Ew and Sw are
achieved by hot update technology, thereby improving the
efficiency and accuracy of search results. By updating the
dictionary of the word segmentation in real time, the custom
word segmentation can analyze the text in real time without
restarting the application, thereby satisfying the efficient
search needs of users. Furthermore, the Elasticsearch
algorithm optimization code is shown in Algorithm II.

IV. APPLICATION AND TEST

A. Comparison of Synchronization Delay Between Canal
and Logstash

The current mainstream synchronization framework is
Logstash. However, there are some issues like poor timeliness,
high resource consumption, insufficient data secondary
processing and filtering ability. Thus, this paper proposes a
solution to optimize the open source synchronization
framework Canal combined with SpringBoot technology.

To verify the performance of the synchronization
technology used in MPTP, a synchronization delay

5

experiment based on two Intel(R) Core i7 cpus and 16G RAM
computer equipment is designed. Moreover, MySQL and
Elasticsearch are installed to provide data support, real-time
synchronization monitoring. More importantly, the other
machine is configured with Canal and Logstash environments,
which is connected to MySQL and Elasticsearch.

Table I shows the comparison of the delay (unit: seconds)
of the two synchronization frameworks when the data are
10,000, 100,000 and 1000,000 records respectively.

TABLE I. COMPARISON OF TIME DELAY FOR DATA
SYNCHRONIZATION

Test Name 10000 100000 1000000
Canal 2.830 10.510 155.927

Logstash 2.1 10.769 204.318

TABLE II. THE CPU USAGE WHEN THERE IS NO DATA CHANGE

Test Name Average CPU Usage/%
Canal 0.6

Logstash 2.1

TABLE III. CPU USAGE OF MYSQL DURING DATA
SYNCHORNIZATION

Test Name Average CPU usage for MySQL/%
Canal 4.0

Logstash 21.6

TABLE IV. COMPARISON OF RETRIEVAL CAPABILITIES BETWEEN
MYSQL AND ELASTICSEARCH

Test Name Index Speed/ms
Canal 84

Logstash 4

Fig. 4. The comparison of CPU usage.

Firstly, a real-time monitoring file is configured in the
synchronization process of a large amount of data to track data
changes, which also updates index in Elasticsearch.

Secondly, the synchronization time for Canal is calculated
as the normal time interval from MySQL to Elasticsearch,
which is optimized using an exponentially weighted average.
Thereafter, the synchronization time of Logstash is the ideal
interval from MySQL to Elasticsearch, where the current
batch of data is updated, and then the new batch of data is
synchronized immediately. Moreover, the synchronization

delay of Logstash shown in Table I is based on ideal interval
completion. Under normal circumstances, Logstash
synchronization data time follows the following formula:

interval .datat T sp I (2)

In equation (2), (Tinterva) is the Logstash time interval set
by custom, sp is the time from the completion of the last
synchronization when the data is updated to MySQL. In
addition, data is the amount of data at this time, (Idata) is the
ideal synchronization time corresponding to the amount of
data.

Thirdly, the analysis in Table I shows that the delay of
Canal is lower than that of Logstash when the amount of data
is no more than 10000, which indicates that the performance
of Canal is not fully demonstrated when dealing with small
amount of data. However, the excellent performance
advantage of Canal in dealing with large amount of data
synchronization gradually manifests after the data size
exceeds 100000. Specifically, the results of 1000000 show
that Canal has opened a gap with Logstash.

B. CPU consumption comparison between Canal and
Logstash

The CPU consumption experiment is carried out on the
constraint of 100000 data, and then the proportion of CPU
consumption resources in the process of synchronizing
MySQL to Elasticsearch by Canal and Logstash is mainly
used to illustrate the performance of the framework.

This experiment is based on the comparison of CPU
resources consumed by the two frameworks in the whole
process of one batch data processing, and then the results are
shown in Fig. 4. Due to Canal conducting business adaptation
operation and synchronization cycle monitoring, the CPU
resources occupy a large proportion in the early stage of
processing. After the related operation completing, then
synchronization work is done, thus the CPU resources share
of Canal decreases significantly compared with Logstash
framework.

Actually, the data synchronization task in the system is not
always carried out. When there is no data synchronization task,
the average CPU share of the two framework processes is
shown in Table II. It is clear that Canal consumes less server
resources than Logstash.

Typically, the synchronization task needs to interact with
MySQL database. Therefore, MySQL's average CPU usage
may also reflect the performance of the framework. Table 3
shows the statistical average CPU occupancy of MySQL
during the execution of synchronization tasks. Table III shows
that Canal not only occupies relatively less resources in the
synchronization process, but also it has a relatively small load
on the MySQL database.

In summary, when Canal is used as the data
synchronization technique, which not only consumes less
system resources, but also it has higher processing efficiency.
Especially for the large amount of data synchronization, the
performance is more obvious, and then there is the advantage
of low resource occupancy in the case of not executing tasks.
It has great significance to save system resource consumption
in the case of small data changes like early morning and
holidays. Moreover, these features are also more suitable for
current business scenarios

6

C. Comparison of retrieval capabilities between MySQL and
Elasticsearch

MySQL database also has the ability of retrieval and query.
Compared with the improved Elasticsearch, whether there is a
significant difference in their retrieval speed. Considering the
data pressure of MySQL, this paper makes comparative
experiments on retrieval performance with 10000 data from
MySQL and Elasticsearch.

Fuzzy query of MySQL database and multi-field retrieval of
Elasticsearch are used in the experiment. Besides, the same
fields and retrieval values are adopted for data search, and the
retrieval results are obtained and compared. Based on numerous
experiments, the retrieval performance of MySQL and
Elasticsearch is obtained by averaging, thus the related results
are shown in Table IV. Additionally, the experimental results
show that the retrieval performance of optimized Elasticsearch
is 21 times than that of MySQL under the condition when the
current data volume is 10000. Beyond that, Elasticsearch has
extensive advantages in the retrieval speed of millions of data.
Therefore, it can be seen that the optimized and improved
Elasticsearch can fully satisfy the search requirements of MTPF
no matter what data level, which can provide more efficient full-
text search capabilities that are more consistent with user
semantics.

V. CONCLUSIONS

There are two main contributions in this paper. Firstly,
aiming at the situation that some business data need to be
processed again in the process of data synchronization, the
component adapter is rewritten based on the Canal framework,
then it can flexibly configure business processing functions and
improve the efficiency of data synchronization. Secondly, the
other one is mainly used to solve the impact of high-frequency
words and useless words on the performance in the process of
full-text search. By constructing a new tokenizer in the
Elasticsearch engine, different weights are given to different
words in the search process to solve such issues. And finally, by
deploying the application in the MPTP platform, the test and
application have achieved brilliant results.

In the future, we plan to address some hot issues like data
conflicts, network issues and synchronization delays, which may
be a critical point in the field of artificial intelligence.

REFERENCES
[1] X. Zhang, Y. Li, J. Pan, D. Chen, “Algorithm/Accelerator co-design and

co-search for edge AI,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 7, pp. 3064-3070, Jul. 2022.

[2] H. Farbeh, A. M. H. Monazzah, E. Aliagha and E. Cheshmikhani, “A-
CACHE: Alternating cache allocation to conduct higher endurance in
NVM-based caches,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 66, no. 7, pp. 1237-1241, Jul. 2019.

[3] J. Han, Y. Kwon, K. Byun and H.-J. Yoo, “A fault-tolerant cache system
of automotive vision processor complying with ISO26262,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 12,
pp. 1146-1150, Dec. 2016.

[4] J. Han, Y. Kwon, Y. C. P. Cho and H.-J. Yoo, “A 1GHz fault tolerant
processor with dynamic lockstep and self-recovering cache for ADAS
SoC complying with ISO26262 in automotive electronics,” 2017 IEEE
Asian Solid-State Circuits Conference (A-SSCC), Seoul, Korea (South),
2017, pp. 313-316.

[5] Giuseppe Amato, Paolo Bolettieri, Fabio Carrara, Fabrizio Falchi, and
Claudio Gennaro. “Large-Scale Image Retrieval with Elasticsearch,” In
The 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval (SIGIR '18). Association for
Computing Machinery, New York, NY, USA, 2018, pp.925–928.

[6] M. Bajer, "Building an IoT Data Hub with Elasticsearch, Logstash and
Kibana," 2017 5th International Conference on Future Internet of Things
and Cloud Workshops (FiCloudW), Prague, Czech Republic, 2017, pp.
63-68.

[7] Shah, Neel, Darryl Willick, and Vijay Mago. "A framework for social
media data analytics using Elasticsearch and Kibana." Wireless networks,
2022,pp.1-9.

[8] Praveen M Dhulavvagol, Vijayakumar H Bhajantri, S G Totad,
“Performance Analysis of Distributed Processing System using Shard
Selection Techniques on Elasticsearch,” Procedia Computer Science, vol
167, pp. 1626-1635,2020.

[9] Voit, Aleksei, et al. "Big data processing for full-text search and
visualization with Elasticsearch." International journal of advanced
computer science and applications, vol 8, no.12, pp.76-83, 2017.

[10] Josh Devins, Julie Tibshirani, and Jimmy Lin. 2022. “Aligning the
Research and Practice of Building Search Applications: Elasticsearch and
Pyserini,” In Proceedings of the Fifteenth ACM International Conference
on Web Search and Data Mining (WSDM '22). Association for
Computing Machinery, New York, NY, USA,2022, pp.1573–1576.

[11] D. Bhatnagar, R. J. SubaLakshmi and C. Vanmathi, "Twitter Sentiment
Analysis Using Elasticsearch, LOGSTASH And KIBANA," 2020
International Conference on Emerging Trends in Information Technology
and Engineering (ic-ETITE), Vellore, India, 2020, pp. 1-5.

[12] L. Han and L. Zhu, "Design and Implementation of Elasticsearch for
Media Data," 2020 International Conference on Computer Engineering
and Application (ICCEA), Guangzhou, China, 2020, pp. 137-140.

[13] Zmaranda, Doina R., et al. "An analysis of the performance and
configuration features of MySQL document store and elasticsearch as an
alternative backend in a data replication solution." Applied Sciences
11.24 (2021): 11590.

[14] Kim, Mi, and Dosung Kim. "A Suggestion on the LDA-Based Topic
Modeling Technique Based on ElasticSearch for Indexing Academic
Research Results." Applied Sciences 12.6 (2022): 3118.

[15] F. Ahmed, U. Jahangir, H. Rahim, K. Ali and D. -e. -S. Agha, "Centralized
Log Management Using Elasticsearch, Logstash and Kibana," 2020
International Conference on Information Science and Communication
Technology (ICISCT), Karachi, Pakistan, 2020, pp. 1-7.

[16] L. Zhou, B. Lu, S. Zhang, L. Qi, “Data cache optimization model based
on hbase and redis,” in Proceedings of the 3rd International Conference
on Data Science and Information Technology, Xiamen, China, 2020, pp.
31-35.

[17] Q. Liu, H. Yuan, “A high performance memory key-value database based
on redis,” Journal of Computers, vol. 14, no. 3, pp. 170-183, Feb. 2019.

[18] V.-A. Zamfir, M. Carabas, C. Carabas and N. Tapus, “Systems
monitoring and big data analysis using the Elasticsearch system,” 2019
22nd International Conference on Control Systems and Computer Science
(CSCS), Bucharest, Romania, 2019, pp. 188-193.

[19] B. C. Ghosh, S. K. Addya, N. B. Somy, S. B. Nath, S. Chakraborty and S.
K. Ghosh, “Caching techniques to improve latency in serverless
architectures,” 2020 International Conference on COMmunication
Systems & NETworkS (COMSNETS), Bengaluru, India, 2020, pp. 666-
669.

[20] Y. Li, Y. Jiang. Y, J. Gu, M. Lu, M. Yu, “A cloud-based framework for
large-scale log mining through apache spark and Elasticsearch,” Applied
Sciences, vol. 9, no. 6, pp. 1114, Mar. 2019.

[21] S.-C. Kim, H.-D. Jang, “A study on system and application performance
monitoring system using mass processing engine (Elasticsearch),”
Journal of Digital Convergence, vol. 17, no. 9, pp. 147-152, 2019.

