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Abstract—Defense operational and tactical activities are in-
creasingly shifting towards joint, inter-agency, multinational and
public (JIMP) partners. In addition, C2 is based on data being
generated at an increasing rate by an increasing number of
sources in the physical, human and information landscape.
Future C2 systems need to cope with this varying number of
heterogeneous, distributed knowledge bases using an information
services architecture, as well as operational circumstances such as
varying connectivity. In this concept paper we therefore propose
that a data-centric approach for the enabling infrastructure
may provide a better and future-proof basis than a traditional
application-centric architecture, which has been a major focal
point for IT-design and development over the last decades. Using
an experimental data-centric architecture, we aim to understand
how a vehicle fleet data processing infrastructure can offer 1)
quicker access to the data(sets) users require for developing
their services by automated data synchronization and discovery;
and 2) provide better insights into service performance by
automatically gathering telemetry to generate recommendations
for fleet managers.

Index Terms—Data-centric, Multi-domain C2, Federated
Cloud, Service Orchestration, Data Synchronization, Kubernetes,
KubeFed, Fleet Management

I. INTRODUCTION

Intelligence is of utmost importance to increase the effec-
tiveness of military actions. However, there are three related
problems that limit flexibility and efficiency in information
provision to a military user.

First, the intel collection process is organized reactively,
with the military user mostly looking for the information
himself. However, the amount of information that is becoming
available is constantly increasing, making it impossible for
humans to fully process. The search for information itself
can be augmented by services that apply to a more pro-
active automated push of tailor-made, pertinent information to
the military user which is tailored to the operational context
[1]. Since it is not known beforehand which information is
relevant to which user in a mission, the available data should
be available to all authorized users, instead of being locked up
in one system or application, as is currently often the case.

Second, the current development and deployment cycle of
C2 services is limiting operational effectiveness. For example,
new technologies such as AI-powered data processing, take a
long time before they are used by existing applications. This
sometimes results in slow distribution of important insights
gained during a mission to other mission partners. Moreover,

developing, deploying, and rolling out updates for C2 services
using these insights on the fly is currently not possible within
the existing C2 services architectures as these are typically
pre-configured, static, monolithic and have a large size.

Third, current C2 systems are not able to cope with a vary-
ing number of heterogeneous, distributed information sources
to which joint, inter-agency, multinational and public (JIMP)
partners can provide information. Future C2 systems therefore
should be able to cope with the systems of the coalition
partners as well as available other sources of knowledge. The
requirement to handle multiple, heterogeneous, distributed data
sources in a JIMP context leads to an architecture that allows
newly developed C2 systems as well as existing sources to
exchange data.

Fourth, future C2 services will need to function in a mission
with interrupted network connectivity. These interruptions
can come from an operational need to limit electromagnetic
signals, but also because radio connectivity can be interrupted
by jamming, physical obstacles in a mission area etc.

This concept paper has the following structure: in Section
II, we start by describing the technical developments on
microservice and containerisation as a starting point for our
analysis. Second, Section III describes the specific objectives
and experiment approach in building and testing a microser-
vice architecture. We end in Section IV with conclusions and
proposed follow up work in Section V.

II. SOLUTION DIRECTION

The proposed solution addresses the four abovemen-
tioned problems by making use of these technical trends:
data-centricity, microservices, container orchestration, and
federated/multi-cluster environments.

A. Data-centricity

Over the last few years, a switch from application-centric
to a data-centric approach in software development has taken
place. Previously, the application-centric architecture has been
the major focal point of the IT industry, in which the ap-
plications were the primary structural element, supported by
middleware solutions to enable inter-connectivity. The dis-
advantage of the application-centric approach is that data is
‘locked’ in by the application and cannot be easily reused
by other applications. The data-centric paradigm puts the data
central and an application is just an entity that performs an



Fig. 1: Comparison between an application-centric (left) and
data-centric (right) approach.

operation on some data and produces some new data. All data
is stored in data stores accessible via a small number of API’s,
which make the data re-usable for multiple API’s. In addition,
data can remain unchanged (e.g. for later analysis) while the
API’s can update, upgrade or be changed completely. This
requires solutions that help to manage microservices in for
example schema management, read/write access when using a
set of data stores. The accompanying paper [2] describes one
way of how microservices can be managed through a service
directory and smart connector.

This switch from an application-centric to a data-centric
approach is illustrated in Figure 1. On the left side of the figure
the Army, Navy and Airforce of a single nation have their own
applications, and each application holds its own data. This is
aggravated in a JIMP coalition. On the right side of the figure
data is, within security limits, available for all applications
from the Army, Navy and Airforce.

B. Microservices

As described above, the new operational reality forces a
change from monolithic applications that keep data hidden
from other applications, towards an architecture where data is
central and intelligent modules use this data to make transfor-
mations towards higher level data suited for human operators.
These intelligent modules are not large pieces of software, but
instead envisioned as many small modules that have single
purposes. Larger functionality is built upon the combination
of several smaller modules. The appropriate architectural prin-
ciple to implement these modules is as microservices. A mi-
croservice architecture enforces loosely coupled components
in the design of a software application. Each microservice
implements a set of narrowly, related functions [3]. In [2] the
needed technical infrastructure to build a larger application
from microservices is examined.

Using microservices has several advantages over using
monolithic applications. First, individual services can (more)
easily, and with quicker pace, be extended, updated or re-
placed. Separate development teams can work on the mi-
croservices simultaneously. This is because interfacing with a
relatively low number of standardized data stores provides sim-
plicity over interfacing with many application-specific API’s.
Second, as the number of API’s becomes more manageable,
it is easier to share data between different parties. Third,
testing and deploying the software becomes easier [4]. Fourth,

In the Mobile-Dismounted-on-foot conditions it is easier to
determine where the data should reside in order to have
it available when necessary. This means that some data
processing can be performed near the acquisition devices,
thus saving precious bandwidth [5]. Note that while use of
microservice architecture has benefits for feature development
and deployment, it is well known to add complexity and
overhead in terms of communication. As microservices are a
relatively new phenomenon, it is not yet known under which
conditions a data-centric implementation of C2 services using
microservices holds the most added value [6].

For example, decentralized acquisition of data is done by
a camera mounted on a military vehicle. A microservice
running on the IT infrastructure of the vehicle has sufficient
computing power for number plate recognition, but not for
full image analysis. This microservice thus allows for a quick
alarm on the spot. Full analysis of the camera feed to search
for related information can be postponed, when a vehicle
returns to base where more extensive camera feed processing
power is present using a regular video processing application.
In practice therefore, we expect that a hybrid architecture
with several monolithic applications combined with specific
microservices will be the most practical way forward. How
and when microservices hold added value for this problem
context, is the focus of this research paper.

C. Container orchestration

For military users to make full use of the new possibilities
of microservices, the management of thousands of services
of many vehicles needs to be supported by using container
orchestration. More specifically, microservices can be up-
dated instantaneously as new releases become available with
bugfixes or feature additions, while military vehicles usually
suffer from limited bandwidth or no connection at all during
a mission due to enemy jamming. Moreover, in a fleet of
vehicles it is very time-consuming to manually check and
update each unit individually. Some approach has to be in
place to facilitate updating services.

Containerized service deployment technology allows ser-
vices to be rapidly deployable, scalable and updated fre-
quently. In a network with full connectivity, this allows code
to be shipped and deployed quickly when needed on a specific
location and/or computing platform. In environments with
frequent interruptions in network connectivity this approach
helps to enable a faster development and deployment cycle of
C2 services in three ways:

First, a containerized microservice deployment approach
will help to leverage important insights gained during missions
in the field, by enabling the rollout of improved versions of
services in a fleet of vehicles based on new mission data.
Currently, software technology in military vehicles is at best
updated every few years.

Second, this approach helps to share workloads during a
mission immediately with other JIMP partners in the network
and/or information or data analysts that reside on the mili-
tary compound, by providing scalability and isolation, and a



reproducible runtime environment. For example, when group
of vehicles does not have the processing power to analyze a
larger video feed, the computation can be containerized and
shared with other vehicles of a JIMP partner nearby to speed
up the analysis by distributing the workload.

Third, a containerized microservice deployment approach
helps to add and remove new C2 services and functions
more quickly when the information need of users changes.
Currently, C2 systems in military vehicles are monolithic, pre-
configured and static; it is not possible to swap out function-
ality easily when users require new information because of
changes in a mission.

D. Federated and multi-cluster environments

To provide functionality for deploying services to edge de-
vices and other compute clusters in mobile platforms (such as
a military vehicle) and managing desired state in these varied
heterogeneous cluster environments, orchestration over multi-
ple platforms is required. Container orchestration platforms
such as Kubernetes enable robustly running and managing
isolated, containerized workloads in a common environment
with ease.

The wish to communicate and apply control over multiple
(geo-distributed) clusters is one that springs to mind quickly.
While federated, and multi-cluster environments have been
considered and applied for a number of years already, having
a standard interface popularized by the ecosystem around
Kubernetes allow operators to set up such environments with
much more ease. This in turn created a need for new solutions
in the multi-cluster space, to solve challenges with e.g. multi-
cluster visibility, service discovery, and workload placement,
which are the topic of ongoing research. Different approaches
to multi-cluster environments can be applied which pose their
own challenges, such as centrally managed federated clusters
(which is applied in this work), or those that are decentralized,
an example of which is proposed in [4].

E. Research questions

Current time-to-act with data gathered in the field can be
decreased significantly. In this concept paper two aspects of a
data-centric, containerized and knowledge driven architecture
are examined to see which technological implementations are
suitable.

The first aspect deals with how data can be managed in
order to be ready for processing when the end-user has a
need for that particular piece of information. The second
aspect deals with how a fleet manager can best determine
when to update, deploy, delete or upgrade these services over
multiple platforms. The implementation of both aspects must
take operational circumstances such as limited bandwidth and
the loss of connectivity into account. More specifically, we
focus on two research questions in particular:

• How to quickly distribute data and or insights obtained
during a mission as soon as connection has been estab-
lished (possibly with limited bandwidth)?

• How to make sure that the services deployed on mobile
platforms remain up to date in a situation where services
can be updated or added at any moment?

On a technical level these can be translated into a number
of more detailed research questions:

• What technology is suited to speed up the development
and deployment cycle of C2 services in a large-scale
heterogeneous environment of mobile platforms?

• What technology is suited to increase adaptivity of C2
services by faster deployment, easier migration and less
overhead?

• What technology is required to have data gathered on
missions quickly available as input to other C2 services,
and to serve as insight for intelligence officers and
developers of C2 services?

• What technology is suited to keep an overview of the state
of such a system of systems, and to manage interactions
with the system?

• What technology is suited to give insight into perfor-
mance of such systems in varying conditions?

III. TECHNOLOGY ARCHITECTURE IMPLEMENTATION

To this end we have investigated and realised a technical
implementation of a data-centric federated architecture as pro-
posed by [1]. We first describe the main technical components,
after which we will highlight, and discuss in more detail,
the components that specifically enable the two characteristics
noted in Section II-E above.

A use case is used to evaluate prototype implementations
of the components.

A. Use case

The following scenario is used to outline the proposed
solution.

• A vehicle returns to compound after completing its cur-
rent operation, having collected variety of data (object
detections, service metrics, etc.). This is stored in a
message bus and in local databases on the vehicle.

• On board, it is running a set of services (e.g. Vehicle
Recognition Service (VRS)) previously deployed by the
fleet manager.

• Once back at the compound, the vehicle is automatically
connected and registered to the compound cluster. Data,
services, and telemetry from various sources are synchro-
nized (such that they can serve as a permanent Knowledge
Base [2]), allowing data scientists and automated services
to identify and develop improvements to the VRS given
the current mission profile.

• Additionally, this data is immediately available to military
analysts.

• The fleet manager decides the new improved version of
the VRS should be deployed over a subset of vehicles
and schedules the rollout on his dashboard.

• Reconciliation commences to synchronize the specified
vehicles and upgrade their software, readying them for
their next task.



B. Technology

Two computing clusters were set up on premise. A main
cluster, acting as a central control node, represents the com-
pound in our use-case. A second, smaller edge cluster repre-
sents the mobile platform. Kubernetes [7] is selected in this
work as container orchestration solution. Originally developed
in-house by Google, it is now open-source, maintained by
the Cloud Native Computing Foundation [8], and dominates
the container orchestration space. As it has the most mature
ecosystem and supports the vast number of different work-
loads that we might encounter in a military environment,
it is preferred in this work to alternative solutions such as
Docker Swarm [9] or Apache Mesos [10]. Kubernetes follows
a master/worker architecture, the full details of which are
available at [4]. Moreover, support for edge, multi-cluster and
federated architectures are present or well-supported by third
party providers, which is a notable requirement of the concept
we propose.

In resource-constrained edge environments it is important
to be able to deliver orchestration capacities in a lightweight
manner, and since we envision mobile platforms hosting their
own edge clusters, we require a way to enable federated
cluster communication and control. For this purpose, we
investigated Kubernetes Cluster Federation (KubeFed), the
official cluster federation API-extension [11] for federated
resource orchestration, and Rancher’s K3s [12] as lightweight
Kubernetes edge distribution. Considered alternatives include
Rancher Fleet [13] (still in very early stage of development)
and KubeEdge [14]. KubeFed takes a more Kubernetes-native
approach – being able to federate any Kubernetes resource to
a federated kind - and while KubeEdge has (at Kubernetes
v1.17) constraints on cluster size, KubeFed theoretically does
not have a cap on the number of clusters it supports, which
is in line with our use-case. One limiting factor are the
etcd storage limits, when objects with references to each
cluster (one can imagine CA certs) grow too large for the
default maximum etcd object size. Figure 2 gives a high-level
overview of this setup.

The edge cluster on the mobile platform consists of a set
of base components to provide functionality for connecting
to the compound cluster (vehicle daemon), obtaining service
metrics (metrics service), and storing service images (OCI
registry). It also holds a message bus, modelled after the
NGVA 1 concept [15]. Two user applications, the camera- and
vehicle recognition service record data and publish them to
the message bus. This data is persisted locally on disk. The
compound cluster holds components that provide a prototype
technical solution to answer our research questions. Most
notably, the fleet management services, and the data sync
service. We will discuss these components and their evaluation
in further detail below. Kubernetes Cluster Federation handles

1NGVA is a NATO Standardisation Agreement (STANAG 4754) based on
open standards to design and integrate multiple electronic sub-systems onto
military vehicles which are controllable from a multi-function crew display
and control unit.

Fig. 2: High level overview of cluster setup with vehicles
(edge clusters) and a compound cluster. Listed are the most
relevant services introduced in this work. Basic Kubernetes
resources such as etcd nodes, Ingress, and DNS, including
service-specific resources such as Deployments, PV’s, etc. are
left out for brevity and clarity.

joining multiple clusters together, allowing for tailored service
deployment to individual (vehicle) clusters.

C. Fleet Management

Fleet management encompasses a number of operations
we aim to support. A fleet manager should be able to see
what vehicles are currently joined to the compound cluster
and ready to synchronize; see what versions of C2 services
are currently available on the vehicles; be able to manually
schedule data synchronization; and schedule new deployments
of C2 services to a set of vehicles. This has been implemented
as a frontend, together with a backend that exposes an API.

To maintain the current state of the fleet, we decided to
implement a heartbeat mechanism, in which the clients (a
compact microservice running at the vehicles) repeatedly try to
reach the server (the fleet manager running at the compound)
by sending a unique token representing the vehicle. These
messages will never be sent over the scarce radio bandwidth
outside of the compound, but instead only using short-distance
communication methods within the compound, like Wi-Fi in
our experiment. The problem with a reverse method, where
the server is responsible for verifying which vehicles are in
the compound, is that the clients are often hidden behind NAT
(Network Address Traversal) devices like routers and firewalls,
and more often than not, unreachable from the server [16].

Once a vehicle returns to the compound and has network
connectivity to the compound cluster, it will not only show
up as ‘Connected’ in the dashboard, but also within the
federated Kubernetes cluster. Kubernetes will try to get to
a desired state again, by reading the current state of the
services running on the vehicle, and then check if there are
any changes that need to be applied to get to the desired
state. Imagine that a data scientist releases an improved version
of the Vehicle Recognition Service. After it has been tested,
a fleet manager can decide that this new version is rolled



out on a specific vehicle. This vehicle is currently outside
the compound, but once it returns, the federated Kubernetes
solution will automatically roll-out this new version.

D. Data Synchronization

Synchronizing data from vehicles that connect to the com-
pound is managed by the data sync service. When a vehicle
joins the federated cluster, initiated by the daemon running
on the vehicle, a request is sent to the data sync API with
information on the vehicle’s identity. After identity validation,
the data sync service queries the edge cluster for services to
synchronize (it may not be required to synchronize all data)
and generates security credentials. It then uses Kubernetes
Cluster Federation to spawn a sync job at the edge cluster
with these credentials and information regarding the data to be
synchronized. This allows the sync job to locate the data and
synchronize securely to the compound cluster. An overview of
this process is given in Figure 3 below.

We opted for low-level Kubernetes-native solutions to these
challenges, instead of wrapping built-in synchronization pro-
vided by e.g. well-known object stores, since we cannot rely
on those being present on all mobile platforms. Data synchro-
nization is implemented using Volume Cloning [17], which is
available for dynamic storage provisioners (in theory nothing
should prevent cloning non-dynamic Persistent Volume (PV)
as long as both Persistent Volume Claims (PVCs) request the
same storage class and regular dynamic provisioning works,
but this has not been validated). This allows us to create new
volumes from existing volumes, and enables the use of non-
RWX (ReadWriteMany) PVs (something that is prevented by
having the synchronization job claiming the actual PV used
by the application to be synced), at the cost of temporary data
duplication.

We ran functional tests to validate the synchronization
mechanism and service components in a lab environment
by running a database application on the edge cluster with
PV mounted to a local disk. On sending a request to the
data sync API, we observed credentials being generated; the
synchronization job being spawned on the edge cluster; and
the data being synchronized correctly to the compound cluster
– in normal situations as well as during interrupts. We aim to
validate this behaviour further in a setting with live vehicles in
future work, given multiple data sources and in collaboration
with SME’s to provide feedback.

IV. CONCLUSION AND DISCUSSION

In this concept paper, we have described how current
technological advancements in the cloud (native) domain can
help alleviate many pains currently experienced within the
realm of military vehicle fleets, and realized this in a technical,
data-centric, federated solution architecture. It provides more
flexibility and efficiency in future operations by providing
information to military users in a timely manner, and ease of
managing C2 services. More specifically, it can be stated that
the individually implemented architectural elements work as
intended within the limited scenario used. The used technology

Fig. 3: Technical overview for data sync service in a
federated/multi-cluster environment. A sync job is spawned
on the edge cluster, either manually by the fleet manager or
automatically when connection is established with the vehicle.
This job contains the necessary information to locate relevant
application data as well as security credentials to obtain
restricted access to the compound cluster. On completion of
the synchronization the environment is sanitized, and the fleet
manager is notified of newly available insights.

is largely based on open source (cloud native) solutions and
provide a stable basis for further experimentation. While it is
a relatively mature technology, it is not suggested that this
exact implementation of the described technology should be
used in later implementations. The developments described in
this paper are used to derive requirements that need to be met
by tailored solutions.

The fleet management and data synchronization compo-
nents, together with our proposed federated architecture, pro-
vide solutions to our two main research questions in the
context of C2 service management across a fleet of platforms:
how can data be quickly distributed as soon as connection to
a mobile platform has been established; and how to ensure
that deployed services remain up to date. In particular, we
described which - and provided an implementation of –
technology that is suited to speed up the development and
deployment cycle of C2 services and increase adaptivity; and
developed solutions to augment the availability of mission data
to analysts/developers, and to maintain an overview of the state
of such a system of systems. While we tested our approach in a
lab environment, in a next step we will validate the architecture
and individual components in a larger, live experiment with
SME’s.

We observe that there exist limiting factors to operational
effectiveness, flexibility, and efficiency in information provi-
sion to military users. These stem in part from the rigid C2 IT
architecture and constrained data availability. In this work we
present an alternative approach, that incorporates aspects of
modern cloud native software development and open source
cloud technology, to show the benefits of a highly-automated
federated infrastructure in the C2 architecture space.



V. FUTURE WORK AND NEXT STEPS

The research objective and experiment setup provide the
opportunity for a large variety of other interesting research
objectives. In future work we will assess the current technical
implementation in a live experiment with multiple mobile plat-
forms together with SME’s. Other future research objectives
include the assessment of security challenges in a federated
multi-cluster environment; the investigation of cloud-native
tools in the space of data exploration and manipulation to
shorten the C2 service development cycle; the generation of
deployment recommendations for fleet managers; connecting
C2 service development to simulation services to determine
fit-for-purpose; implementation in existing battle management
systems; and the support of peer-to-peer service updates in an
autonomous vehicle use-case.
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