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Abstract: This paper proposes the use of a behavior-based control strategy for collision-free
navigation of a two-wheel differential drive mobile robot in partially unknown environments. The
proposed strategy is hierarchical, and the design of the high-level control layer (behavioral space)
is based on Mamdani fuzzy logic inference, while the design of the low-level control layer (joint
space) is based on Lyapunov stability theory. The collision and deadlock avoidance technique is
based on subgoals that are evaluated in the behavioral space and supplied as references to the
joint space controller. The in silico test study was executed by using the CoppeliaSim which is
a simulation framework used for the prototyping, development and verification of robot systems
and algorithms that is widely used by the robotics community. Several (robot initial and final
poses, walls, corridors, make-like regions, and loose objects placement) test scenarios, and a
comparative study with previous and related work were performed. The test results show the
proposed strategy provided a smooth and shorter path in all cases. This improvement is basically
related with the combined use of the subgoal technique and a Lyapunov based controller. In
summary, the results corroborate the correctness of the methodology adopted in the design of
collision-free navigation for differential drive mobile robots.

Keywords: Behavior-Based Systems, Sensor-based Control, Control Architectures,
Programming, Fuzzy Control and Nonlinear Systems

1. INTRODUCTION

An autonomous mobile robot is a programmable device
that uses proprioceptive and exteriorceptive sensor mea-
surements to gather data from the surrounding environ-
ment, and process it to plan its motion and execute given
tasks, and at the same time avoid collisions with objects
that share the same space. Whenever a detailed map of
the environment is known before hand, one may plan the
robot’s navigation to avoid collisions with static objects.
Besides, the map-based navigation, rely on an accurate
and up-to-date representation of the environment, which
may not be available in unknown or partially unknown
environments.

If unpredictable or dynamic objects appear in the robot’s
path, the navigation planner must include a collision avoid-
ance strategy based on the on-board robot sensing capa-
bilities. This is true in applications like, for instance, au-
tonomous vehicles, warehouse automation, robot vacuum
cleaners, to name just a few. When a mobile robot navi-
gates autonomously in any given area, at least a collision
and deadlock avoidance technique is required to ensure
safe and efficient functioning.

⋆ This work was carried out with the support of the Department
of Electrical Engineering, Center for Electrical Engineering and In-
formatics (CEEI), Federal University of Campina Grande, Campina
Grande, PB.

In general, when an autonomous robot must navigate
in a relatively complex and unknown environment, one
prefers navigation strategies based on reactive control
concepts (De Silva and Ekanayake, 2008). The combina-
tion of the different behaviors (behavior-based control)
that the robot should exhibit in a given environment is
a relatively simple and intuitive reactive control strat-
egy. In the behavior-based control, one chooses a set of
robot behaviors, e.g., “goal seeking”, “obstacle avoidance”,
“deadlock disarming”, and a technique to combine them.
The selection of a given behavior is evaluated based on
the measurements provided by the onboard robot sensors.
Fuzzy Logic (Bao et al., 2009; Van Nguyen et al., 2017a,b),
Arbitration (Brooks, 1986; Baumann et al., 2022), Blend-
ing (Adriansyah, 2014; Ramakrishna Pandian et al., 2021),
Potential Fields (Khatib, 1986; Kim et al., 2016), Behavior
Trees (Colledanchise and Ögren, 2018), Finite State Ma-
chines (Petrovic, 2008; Bozzi et al., 2022), Reinforcement
Learning (Cherroun and Boumehraz, 2012; Sutton and
Barto, 2018) and Evolutionary Algorithms (Shen, 2013;
Sathiya and Chinnadurai, 2019) have been used individ-
ually or in combination to design behavior-based control
systems for mobile robots, allowing for flexible and adap-
tive robot behaviors in various environments and tasks.

Among the mentioned methods, fuzzy logic was chosen
because it provides an effective technique to deal with
uncertainty by means of flexible linguistic categories and



logical rules of inference. This reduces the difference be-
tween human reasoning and numerical application, making
it possible to define control systems through linguistic
rules, which are adapted according to behavior, as in
this context. In addition to its effectiveness as a control
technique, fuzzy logic requires less formal knowledge of
the plant and the environment in which it will be applied,
in comparison to the so-called standard control system
approach, allowing specific movements to be carried out
with a simplified implementation.

Fuzzy behavior-based architectures for two-wheel differen-
tial drive robot navigation in partially unknown environ-
ments with static objects are proposed in (Bao et al., 2009)
and (Van Nguyen et al., 2017a,b). The so called subgoal
technique has been proposed in (Ye and Webb, 2009) for
performance optimization. In general, the formulation of
a behavior-based control problem does not deal with the
low-level control, i.e., robot’s joints control. Without the
robot’s low-level control layer there is no guarantee that
the actual motion of the robot will be exactly as smooth
as expected by the behavioral control layer (Panahandeh
et al., 2019). The use of Lyapunov-based low-level con-
troller for moving target tracking with a fuzzy strategy for
obstacle avoidance has been proposed in (Benbouabdallah
and Zhu, 2013; Kubo et al., 2020). However, the collision
avoidance strategy is restricted to point objects, and thus
cannot deal with deadlocks.

In this paper, we include a high-level control layer based
on Fuzzy Logic that exploits the subgoal approach to
determine robot motion routes. Also in this layer, the fuzzy
controller allows the vehicle to develop different types of
behaviors (e.g., obstacle avoidance, tracking, and deadlock
disarming) while heading to a goal (go to goal). The design
of the low-level control layer is based on Lyapunov stability
theory and provides robust stability and convergence.

2. PROBLEM DESCRIPTION

Figure 1 shows a schematic illustration of a robot with two-
wheel differential drive, a final goal, and an environment
with an obstacle, supposedly static and unknown. The
objective of this paper is to design a control strategy that
allows the robot to go to the final goal while safely avoiding
collision in its path. To do this, the following assumptions
are made

• The goal (target) and robot pose is known and spec-
ified, meaning that we consider a partially unknown
environment.
• The obstacles in the environment are unknown to the
robot, meaning it does not have prior information
about their locations or shapes.
• The robot operates in a two-dimensional space, as
indicated by the schematic illustration in Figure 1.
• The robot is equipped with range sensors that pro-
vide enough information for detecting and localizing
obstacles.
• The robot is a non-holonomic system, and no lateral
slip motion is allowed. However, it can move forward,
backward, and rotate clockwise and counterclockwise
around the z-axis (perpendicular to the xy plane
depicted in Figure 1).

Figure 1. Schematic of the position and orientation of the
vehicle with respect to the final goal.

Besides the basic assumptions regarding the environment,
we also consider that

• For designing both the high level and the low-level
controller, one considers that the two-wheel differen-
tial drive robot is represented by the so called unicycle
model, which is a third-order two-input non-linear
kinematic model (Lynch and Park, 2017); from now
on we will denote this model as our action model.

• For testing the design solution one considers that
the two-wheel differential drive robot with casters
(off-centered orientable, not driven wheel joint) is
represented by a dynamic model (mass, moment of
inertia, friction), which is a fourth-order two-input
non-linear model (Dhaouadi and Hatab, 2013); from
now on we will denote this model as our knowledge
model.

• The testing environment (a virtual world scene in-
cluding the floor, walls, corridors, maze-like regions,
obstacles, range sensors, and robot) and the knowl-
edge model are simulated by using the latest version
of CoppeliaSim (Rohmer et al., 2013). CoppeliaSim
is a simulation framework used for the prototyping,
development and verification of robot systems and
algorithms that is widely used by the robotics com-
munity.

The proposed control strategy is hierarchical. In the upper
layer, the behavior-based controller combines the behav-
iors and sends them to the lower layer, where a nonlinear
controller, tuned by using a genetic algorithm, is used.

3. LOW-LEVEL CONTROL LAYER

3.1 Lyapunov Controller

Consider a vehicle positioned at a nonzero distance with
respect to a goal pose, as depicted in Figure 1. As Kubo
et al. (2020) and Ravangard (2015) a Lyapunov controller
can be used to describe a unicycle-like motion given by




ẋ = u cos (ϕ)

ẏ = u sin (ϕ)

ϕ̇ = ω

(1)

where x, y, denote the vehicle position, and ϕ its orien-
tation. The control inputs are the linear velocity, u, and
the rotational velocity ω, with respect to the xI × yI
frame. However, for designing the non-linear control law
the vehicle motion will be represented by

ė = −u cos (α)
α̇ = −ω + u sin(α)

e

θ̇ = u sin(α)
e

(2)

where e and α denote the distance and orientation with
respect to the goal, respectively. Now by choosing following
Lyapunov candidate function

V (e, α) =
1

2
λe2 +

1

2
hα2, λ > 0, h > 0 (3)

Feedback control laws can be found by minimizing their
time derivatives, causing them to asymptotically converge
to zero and become independent of the values of λ and h.

{
u = γe cos (α)

ω = kα+ γ cos (α) sin (α)
(4)

These equations guarantees global stability and the bound-
edness of the state trajectory corresponding to any
bounded initial condition for κ > 0 and γ > 0 (Aicardi
et al., 1995).

It is worth to point out that the error variables e and α
used to compute u and ω depend on the actual goal being
tracked. Besides, one has to use the following equations{

ωr = 2u+ωL
2R

ωl =
2u−ωL

2R

(5)

to determine the left (ωr) and right (ωr) wheel joint
velocities (L and R are defined in Figure 1).

The use of a nonlinear low-level controller has been pro-
posed by Benbouabdallah and Zhu (2013). However, their
control law is given by{

u = vT
cos(β)
cos(α) −KveD cos (α)

ω = −Kwα− v
D sin (α) + vT

D sin (β)
(6)

where 
α = θ − Φ

β = θT − Φ

eD = Dd −D

(7)

Please see (Benbouabdallah and Zhu, 2013) for the mean-
ing of the terms of the control law. To justify our choice
of the control law given in (4) instead of the one given in
(6), we conducted a preliminary comparison with a simple
scene containing only loose points-objects. Figure 2 shows
this simple scene and the robot navigation under both the
[Snew-(4)] and [Sold-(6)] control laws. In Figure 2 the red
path is associated with Snew and the blue path is associated
with Sold. Table 1 show that the path length under Sold is
larger than (≈1.9X) the one observed under Snew, while the
path travel times are essentially the same. For the [Sold-
(6)] we used θT = θ = 90◦ , α = β, Kv = 2.07, Kw =
1.49, Dd = 0.2 m , and vT= 0.15 m/s. Whereas, for the
[Snew-(4)] we used γ = 0.3 and κ = 1.

Figure 2. Simple scene containing only four loose points-
objects. The red path is associated with Snew and the
blue path is associated with Sold

Table 1. Path length and path travel time
comparison (Figure 2)

Path length (m) Path travel time (s)

Sold 13.76 14.39

Snew 7.28 14.59

3.2 Controller gains tuning

The selection of the low-level controller gains was formu-
lated as an optimization problem, and its solution was
determined by using a genetic algorithm (Burjorjee, 2007).
The two gains were coded into a 40-bits word, being 20-
bits for κ and 20-bits for γ. The chosen test scenario is
depicted in Fig. 3, and the fitness function was defined as

Figure 3. Test scenario used in the controller gains tuning
procedure.

fitness =
1

Φy
+

1

Φu
, (8)

where

Φy = |max(y)− yref| and Φu = |max(u)− uref|. (9)

This choice of this fitness function aims at ensuring that,
during the robot’s movement toward the target pose, u <
uref and y < yref is always satisfied. In the test scenario,
the initial robot pose is (0, 0, π/2), and the target pose
is (0, 1,−π/2). The genetic algorithm was configured to



use the following hyperparameters: population size = 200,
number of generations = 40, crossover probability = 1, and
the mutation probability per bit = 0.003. The final gains
were γ = 0.328 and κ = 1.08. For these gain values, the
time-to-target is 5 s, ymax = 0.15 m, and umax = 1.2 m/s.

4. HIGH-LEVEL CONTROL LAYER

The proposed fuzzy behavior-based architecture for mobile
robot navigation is depicted in Figure 4. For implementing
the high-level control layer strategy one assumes that the
on-board robot sensing capability is a belt of 16 ultrasound
range sensors disposed as depicted in Figure 5. However,
the same concepts used here can be applied to other types
of range sensors like for instance infrared and LIDAR.

Figure 4. Fuzzy behavior-based architecture for mobile
robot navigation.

4.1 Sensor arrangement

The sensors of the belt are grouped in eight groups,
according the wind rose orientations, i.e., west, northwest,
north, northeast, east, southeast, south and southwest, as
shown in the Figure 5.

Figure 5. Placement of the ultrasound sensors on the robot
chassis and assignment of the clusters based on the
wind rose orientations. (a) Standard orientation; (b)
Reorientation of the clusters to redefine the front of
the robot based on the target orientation.

The distances from the robot to an obstacle (di) along the
wind rose orientations are determined by combining the
readings issued from two neighboring ultrasound sensors.
At the time of its initialization, based on the quadrant of
the goal, shown in the grouping sensor readings algorithm
(Algorithm 1), the front of the robot is set, which will
imply either positive (1st or 2nd quadrant) or negative (3rd
or 4th quadrant) linear velocities. Thus, by this grouping
sensor readings the north is always in the same direction
of the motion, as shown in Figure 5.

Algorithm 1 Grouping sensor readings

Input : αgoal, [d1, · · · , d16]
Output: Grouped distances along the wind rose with

north in the direction of movement.
Require t0

1: if |αg| > π
2 then

2: dSW ← min(d14, d15)
3: dWE ← min(d1, d16)
4: dNW ← min(d2, d3)
5: dNO ← min(d4, d5)
6: dNE ← min(d6, d7)
7: dES ← min(d8, d9)
8: dSE ← min(d10, d11)
9: dSO ← min(d12, d13)

10: u← u
11: else
12: dSW ← min(d6, d7)
13: dWE ← min(d8, d9)
14: dNW ← min(d10, d11)
15: dNO ← min(d12, d13)
16: dNE ← min(d14, d15)
17: dES ← min(d1, d16)
18: dSE ← min(d2, d3)
19: dSO ← min(d4, d5)
20: u← −u
21: return dSW, dWE, dNW, dNO, dNE, dES, dSE, dSO

4.2 Basic behaviors

The behavior determination is based on readings of the dis-
tance sensor groups, differing only in the quantity, number
of groups and position of the sensors (Van Nguyen et al.,
2017a,b; Kuo et al., 2013). In the proposed fuzzy archi-
tecture, the basic behaviors are “goal seeking”, “obstacle
avoidance”, “tracking” and “deadlock”. The membership
functions used are summarized as shown in Figure 6. The
control signals are the linear (u) and angular (ω) velocities.
By using the low-level Lyapunov control law, it is possible
to change the input variables for distance (e) and target
orientation (α), as if the goal was elsewhere.

The linguistic labels for the distances issued from the
ultrasound range sensor and to the target are near (N),
medium (M) and far (F), as shown in Figure 6 (a), (c)
and (d). The target distance range was calculated so that
it would not saturate linear velocity of the robot. For
orientation, the inspiration of wind roses is also used,
where SOp and SOn are the two halves representing the
SO, observable in Figure 6 (b).

The rules that define each behavior of the proposed archi-
tecture can be summarized as follows:

Goal-Seeking: It is not necessary to implement the fuzzy
behavior to achieve the goal in the absence of obstacles.
This is because its input, the distance and orientation
to the goal, can be imposed on the low-level controller
without the need to perform inference. In this way, the
subgoal pointed by this behavior is oriented in the same
direction as the main goal and located within a defined
radius;

Obstacle Avoidance: The fuzzy behavior designed for ob-
stacle collision avoidance does not use the distance read-



Figure 6. The linguistic labels and Gaussian membership
functions (a) Goal distance; (b) Goal orientation; (c)
Goal distance output of Deadlock behavior; (d) Wind
rose distances from WE, NW, NO, NE, ES, SE, SO
and SW sensor clusters.

ings of all clusters, as this would increase the number of
rules, only those arranged in the direction of movement of
the robot (WE, NW, NO, NE and ES). Also, to obtain
a possible shortest trajectory, the goal direction is always
considered. It is important to note that the front distance
(NO) needs to be small, so small that this behavior is acti-
vated, and its rules are derived from this initial condition.
Thus, the subgoals defined by this behavior are always
oriented either WE or ES of the robot, depending on the
goal orientation and position of the obstacle, i.e. , during
goal-seeking behavior an L-shaped front and left (right)
side obstacle is identified, the subgoal is positioned a short
distance in the direction of ES (WE);

Tracking: An important behavior to design is tracking,
which generally consists of unilateral and bilateral wall-
following behaviors, i.e. corridors. This behavior should be
complementary to obstacle avoidance behavior, avoiding
strictly lateral collisions and following them. Thus, right-
angle lateral sensor groups (WE and ES) are evaluated,
provided there is no frontal obstacle (NO), and target
orientation so that it does not follow corridors when
unnecessary. Thus, the subgoals will always be within a
small distance in the NO, WE or ES direction, when the
sub-object is behind the wall or in front of it, to the left
or right, respectively;

Deadlock: Deadlock disarming is important for solving
dead-end corridors and u-shaped obstacles. It is possible
to find this solution without describing a specific behavior,
merely avoiding obstacles and following the trail. How-
ever, for better performance, we specify this behavior.
In this paper, a rotation on its own axis clockwise or
counterclockwise is proposed. In the case where the front
and side sensor groups (NO, WE, and ES) are triggered
simultaneously and the distance to the obstacle is small,
a subgoal is defined such that the motion is towards SO,
and this eventually leads the robot to make a rotation
clockwise or counterclockwise.

4.3 Subgoals generator

The subgoal generator yields a position relative to the
robot’s frame as input for the low-level velocity controller,
rather than directly producing linear and angular veloci-
ties as outputs from the fuzzy controller. The inputs are
the polar coordinates error variables [e, α], as explained in
section 3. The subgoal is determined based on the rules
defined for each behavior in the modular fuzzy controller.
The rules that define the subgoal for each of the considered
behaviors were summarized in the Section 4.2.

By means of the subgoal generator, new positions will be
generated as virtual goals for the robot to act according
to that particular condition. This can be seen as the robot
seeking multiple sequential targets that collectively will
form the path leading to the final target, as depicted in
Figure 7.

Figure 7. Virtual goals issued by the subgoal generator
g1 = (t1, e1, α1) , · · · , gn−1 = (tn−1, en−1, αn−1) to-
wards the final target but avoiding collisions.

For combining the behaviors we also used fuzzy logic. The
input for this block are the wind rose distances from the
robot to an obstacle while the outputs are the weights
that each behavior will have in determining the subgoal
that will be provided to the low-level controller. Although
the fuzzy rules be based on (Bao et al., 2009), in the
present solution there is no discontinuity since the behavior
transition is gradual and thus avoids speed spikes in the
robot motion. This smoothness can be inferred from the
graphical representation of the rule surface depicted in
Figure 8.

Figure 8. Rule surface for the fuzzy logic controller used
to combine behaviors.

With {ei, αi,Wi}, i ∈ {g, r, o, d} the weighted sums are
computed by



e (tk) =
∑
i

Wi (tk−1) ei (tk−1)

α (tk) =
∑
i

Wi (tk−1)αi (tk−1) (10)

at each sampling instant (tk, k = 1, 2, · · · ) to generate
the new subgoal along the final goal. The subscripts g, r,
o and d denote the “Goal-Seeking”, “Tracking”, “Obstacle
Avoidance” and “Deadlock Disarming” behaviors, respec-
tively. Each blue circle in the Figure 9 image represents
the virtual goal generated by using (10).

Figure 9. Representation of the position of the virtual goals
generated by each of the behaviors

5. IN SILICO TESTS

To show the effectiveness of the control strategy proposed
in this work, a model of the mobile robot, the surrounding
3D environment and the obstacles were instantiated on
a virtual prototyping platform called CoppeliaSim Edu
V4.5.1 (Rohmer et al., 2013). This open-source platform
is widely used by the robotics community and allows the
creation of scripts for remote communication with the
created scene, controlling individually the elements of the
scene and allowing the calculation of the robot movements,
simulating the operation of the on-board range sensors and
controlling interactions of the robot with obstacles, floors
and other relevant elements. The physics engine used was
the Bullet Physics Library (Coumans, 2015), is a robust
and versatile physics simulation library that offers high-
performance collision detection, rigid body dynamics, and
constraint solving capabilities. Finally, we used the Pioneer
3DX (P3DX) from Adept Mobile Robots, which is a two-
motor, two-wheeled differential drive robot with caster
wheel (Robotics, 2006).

For the in silico tests it was necessary to create virtual
worlds (scenes) where the P3DX is inside a room that
contains several obstacles placed at different positions as
shown in Figs. 10(first scene)-(sixth scene). For simplicity
we considered that the instantaneous P3DX pose as ob-
tained from the ground truth provided by CoppeliaSim is
sent to the control strategy, but on the hand the informa-
tion regarding the obstacles is hid.

The parameters of the P3DX are R = 0.0975 m, L =
0.3810 m, umax = 1.2 m/s, and ωmax = 4.3 rad/s (Robotics,

2006). The ultrasonic sensors are arranged around the
robot chassis to provide a 360◦ viewing angle, as shown
in Figure 5. All sensors in the belt are considered to have
the same sensing characteristics, i.e., a detection range of
3 m and a field of view cone of 15◦. The gains of the low-
level controller were chosen to be γ = 0.3 and κ = 1, and
were kept constant in all test conditions.

For the sake of comparison, we implemented the work
of Bao et al. (2009) (Sold) and compared it with the
solution proposed here (Snew) under the same scenarios
to show the differences with respect to the smoothness
and length of the robot’s path. The three test scenarios
are essentially the same used in Bao et al. (2009) and
Van Nguyen et al. (2017a,b), but we changed the initial
position and orientation of the robot, as well as of the goal.
The reason for choosing these scenarios for demonstration
is due to their different complexities and similarity with
actual scenarios, to cover the different behaviors described
previously.

Figures 10 (a) and (d) are relatively simple environments
without loose obstacles other than the walls. It can be
observed that in both cases Sold and Snew the robot suc-
cessfully navigates, avoiding the obstacles and reaches the
goal. However, when comparing the robot paths (Horiuchi
and Noborio, 2001), it is possible to identify that under
Snew the path length is shorter and smoother than the one
observed under Sold. Table 2 Scene a show that the path
length and path travel time under Sold are larger than
(≈2X) as the ones observed under Snew

Table 2. Path length and path travel time
comparison (Figure 10)

Path length (m) Path travel time (s)

Scene a
Sold 21.58 43.20
Snew 10.81 22.24

Scene b
Sold 16.26 44.55
Snew 13.97 37.45

Scene c
Sold 14.27 27.70
Snew 13.34 33.29

Scene d
Sold 15.90 41.80
Snew 13.89 38.395

Although having the same starting point (Figures 10 (a)),
the robot’s orientation under Snew is rotated by 180°,
highlighting the efficacy of using the evaluation of the
quadrant of the objective in the definition of the robot’s
front, performing the proper behavior configurations, and
preventing local minimum.

Figures 10 (b) and (d) show a maze-like situation, .i.e,
a nearly closed environment with restricted space for
making turns. This type of scenario is built in order to
emphasize the smoothness of the robot’s movement. When
comparing the trajectories under Sold and under Snew, we
see a remarkable difference. In the former, the curves are
sharper, almost scraping the walls, and susceptible to entry
into a loop since the walls are very close, resulting in
a sequence of behaviors that do not reach the solution.
On the other hand, under Snew the path is smooth, with
movements more compatible with obstacle placement. For
the same scenario, a new position for the final goal was
assigned so that Snew decides to navigate backwardly. In
these cases, we can see less effort to align the robot’s pose



Figure 10. Comparison with the robot motion (colored triangles) without (Sold) and with the low-level control layer
(Snew) in different scenarios, start point and end goal. The low-level control design is based on Lyapunov stability
theory. (a) Corridor scenario; (b) Maze scenario with two exits; (c) Room scenario with goal in another room; (d)
Maze scenario with one exit.

with the goal pose, and the robot navigates backwardly.
Table 2, Scene b show that the path length and path travel
time under Sold are larger than (>18%) the ones observed
under Snew

Figures 10 (c), show environments close to real situations
that rely on room sets and common areas with smaller
objects compared to walls, such as chairs and centers. In
these cases, under both Sold and Snew to robot reach the
objective. Again, under Snew the motion is smoother with
fewer abrupt curves and far from the walls. As in the other
cases, the goal was allocated in such a position that the
robot under Snew navigates backwardly, and furthermore,

it was placed between two less problematic objects in terms
of convergence. 1

6. CONCLUSION

This paper has presented a behavior-based control strat-
egy for collision-free navigation of a two-wheel differential
drive mobile robot in partially unknown environments.
The proposed strategy is hierarchical, and the design of the
behavioral layer controller is based on fuzzy logic inference,
while the design of the wheel joint controller is based
on Lyapunov stability theory. We have also compared

1 Video demonstration: Robot navigating under Snew in Cop-
peliasim.

https://www.youtube.com/watch?v=oa5UWQs8x60
https://www.youtube.com/watch?v=oa5UWQs8x60


two different nonlinear control laws for the wheel joint
controller. At the behavioral level, the collision and dead-
lock avoidance is achieved by means of selecting proper
subgoals towards the final. The in silico study revealed
that the proposed strategy yields a mobile robot motion
that is smooth, short, and collision and deadlock free.
Some future works include the validation and refinement
of the proposed solution by using a laboratory prototype,
extending the study to consider the dynamic model of
the obstacle and mobile robot for dealing with energy
constraints, and modifying the low-level control layer gains
according to prescribed subgoals.
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