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Abstract—The rapid development of artificial intelligence has
brought many innovative achievements to fields such as drug
design and drug discovery [1]. Combining traditional graphics
methods with deep learning methods can significantly improve
the accuracy of drug screening.

Hypoxia refers to the process in which tissues or cells in the
body undergo abnormal changes in morphology, physiological
functions, and metabolism due to insufficient oxygen supply or
oxygen utilization obstacles [2]. Hypoxia is a major characteristic
of high-altitude environments, so it is crucial to prevent and treat
cardiovascular diseases related to hypoxia.

Enlargement of the cell nucleus is a recognizable morpholog-
ical feature of hypoxic cells. Based on a deep learning multi-
cell image classification model, this study constructed a high-
throughput compound screening system for discriminating the
anti-hypoxic activity of thousands of compounds. By simulta-
neously performing prediction scoring using AC16 and H9C2
models, the anti-hypoxic activity of thousands of compounds
was predicted, and some compound molecules with anti-hypoxic
effects were successfully screened. Therefore, morphology-based
CNN systems can become powerful tools for screening antioxi-
dant drugs.

Index Terms—Screening of anti-hypoxia drugs , Convolutional
Neural Networks, Deep learning

I. INTRODUCTION

Due to the rapid advancement of Convolutional Neural
Networks (CNNs), the accuracy of image classification tasks
has significantly improved. CNNs have been widely applied in
the field of drug development and screening, and morphology-
based identification systems using CNNs can, in some tasks,
replace molecular biology techniques [3]. By employing arti-
ficial intelligence and machine learning methods, screening
models can sift through vast amounts of compounds to identify
potential drug candidates. Selecting suitable compounds and
conducting activity experiments through screening models can
greatly enhance the efficiency of drug development, reduce
costs, and provide more possibilities for the discovery of new
drugs techniques [4].

Oxygen is a crucial substance for energy metabolism,
serving as the energy source for vital biological processes
in mammals [5]. It is essential for physiological functions
and metabolism in mammals. Hypoxia is a widely studied
condition that profoundly affects cellular metabolism, migra-

tion, and vascular genesis during development and disease
processes.

Hypoxia is one of the primary characteristics of high-
altitude environments, and inadequate adaptation to low-
oxygen environments can lead to altitude sickness. Prolonged
myocardial hypoxia can disrupt the energy metabolism of
myocardial cells, leading to myocardial cell damage and
cardiac remodeling. Hypoxia-related cardiovascular diseases
have a high mortality and morbidity rate worldwide, posing
significant challenges for prevention and treatment.

Currently, both domestically and internationally, drugs used
to treat altitude sickness mainly include traditional West-
ern medicines such as acetazolamide [6], and acetazolamide
inhibitors [7]. However, their preventive effects on altitude
sickness are not ideal, and long-term use can cause significant
adverse reactions. Therefore, there is a growing focus on
seeking effective and low-toxicity candidate components from
traditional Chinese medicine for the development of anti-
hypoxia drugs for high-altitude regions.

However, due to the complex and diverse nature of Chinese
herbal components, as well as the time-consuming and costly
methods traditionally used to construct physical hypoxia mod-
els such as the liquid paraffin sealing method [8] [9], anaerobic
bag gas production method, and the use of cobalt chloride [10],
sodium hydrosulfite, and other chemicals to construct chemical
hypoxia models for screening anti-hypoxia drugs, the devel-
opment process is still in its early stages.

To address these issues, we have developed a hypoxia cell
morphology recognition model based on deep convolutional
neural networks, leveraging their strong image classification
capabilities. This model can classify and identify cell im-
ages to assess and predict hypoxic cell morphology. Through
extensive experiments, we have validated the accuracy and
reliability of this model and established a hypoxia scoring
system based on it, used to evaluate and screen novel anti-
hypoxia small molecules. Additionally, we can conduct further
mechanistic studies on the screened small molecules to explore
their anti-hypoxia mechanisms and pharmacological activities,
providing robust support and guidance for subsequent drug
development efforts.
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II. METHOD

A. Experimental Setting

1) Datasets: The dataset used in this paper was a home-
made dataset. Two types of cardiomyocytes (rat cardiomy-
ocytes H9C2 and human cardiomyocytes AC16) were used to
be cultured in DMEM complete medium containing 10bovine
serum and 1% penicillin-streptomycin double antibody, at
37°C and 5% CO2. Among them, AC16 cells were cultured
in 12-well plates, and H9C2 cells were cultured in 35-mm
dishes, which were dosed after 24H of culture and put into
hypoxia chambers (95% N2, 5% CO2) for hypoxia treatment.
After a period of hypoxia treatment, cells in each experimental
and control set were imaged using an inverted microscope. 98-
138 images were collected for each group for the training and
validation sets, and 5 images were collected for each group
for the test set with the addition of anti-hypoxia compounds

2) Implementation Details: All computer experiments were
trained on an NVIDIA GeForce RTX 3090 with 24GB of video
memory. The network parameters were randomly initialized;
the initial learning rate was 0.0001; the batch size (batch size)
was defaulted to 64; and the number of training rounds (epoch)
was defaulted to 150. the learning rate was tuned using an
exponential decay strategy, with the hyper-parameter gamma
set to 0.98; and the learning rate was tuned and updated using
the Adam optimizer.

B. Multi-cell Edge Extraction

In order to reduce the influence of image background on
the cell classification task and improve the generalization
performance of the model prediction, our method adopts an
edge extraction method to process the edge of multi-cellular
images as an image input to the prediction network. The
edge extraction algorithm is implemented based on the Sobel
operator, and its algorithmic flow is shown in Algorithm 1.

After the edge extraction algorithm, the input image is
transformed from cell phase difference map to cell edge
map, and the effect is shown in Figure 1. Edge extraction
not only can initially extract the morphological features of
cells, but also can suppress the background difference of the
phase difference map, prevent the background difference of
the phase difference map under the microscope caused by the
different culture environment and acquisition time, and prevent
the influence of the different background color on the model
prediction. Since cell culture is time-consuming and costly,
the amount of data obtained from the acquisition is small. In
this paper, a series of data enhancement methods are used
to expand the dataset. Data enhancement of the edge map
was performed using random rotation 0-360°, vertical flip with
probability 0.5 and horizontal flip with probability 0.5, and the
enhanced image was scaled to 128×128 size and used as the
input image for the expert network.

C. Morphological Feature Fusion Network

In the morphological feature fusion network proposed in
this paper, the input cell edge image is firstly subjected to
preliminary feature extraction and preliminary morphological

Fig. 1: Multi-cell edge extraction effect image

Fig. 2: Architecture of morphological feature fusion network

features F1 are obtained; then advanced cell morphological
features Fatt are extracted by using the jump connection and
attention module and the information between channels is
learned and the number of channels is adjusted through the
bottleneck layer; further morphological features are extracted
by using the dense attention module and the loss of infor-
mation in the process of feature extraction is compensated
for, and the results F

′

att are obtained; the edge features are
fused with the advanced morphological features using average
pooling, and then the prediction results for the hypoxia scoring
of the image is outputted by using the fully connected layer
and the softmax function. The network architecture is given
in Figure2, and the specific process of orphological feature
extraction and fusion is described in Algorithm2.

The results of a series of pre-experiments showed that the
Dense Connectivity Module and the Attention Module each
had different benefits for the two types of cells, AC16 and
H9C2. In order to enhance the generalization of the expert
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Fig. 3: Architecture of dense attention module

network to classify the two types of cells, a new dense
attention module is designed in this paper.

1) Dense Attention Module: In dense attention module,
the input features are firstly processed by 1×1 convolutional
kernel to obtain F1, which are added pixel-by-pixel with the
initial input features as inputs to the attention module [11];
then the foreground feature enhancement and background
feature suppression are performed on the summed features
by using the serial channel attention mechanism and the
spatial attention mechanism to obtain the attention features
Fspace; finally, pixel-by-pixel summation is performed again
with the initial features and Fspace, the final fusion of the
summed features is performed by using 3×3 convolutional
kernel to obtain the output features of the attention module.
Finally, the initial input features are summed pixel by pixel
again, and the summed features are finally fused using a 3×3
convolution kernel to obtain the output features of the dense
attention module F

′
. The details of dense attention module

are illustrated in Figure3.

D. Multi-Expert Voting Intelligent Drug Screening

The multi-expert voting intelligent drug screening system
has 10 input images, 5 phase difference maps each from AC16
cells and H9C2 cells collected after being cultured with the
drugs to be tested, which are used to eliminate the experi-
mental bias. Firstly, the edge extraction module was used to
extract the edges of the 10 images; then the images were input
into the corresponding morphological feature fusion expert
networks for cellular morphological feature extraction and
hypoxia morphology score prediction; finally, the respective
hypoxia scores were averaged and compared with the control
scores. The system retained compounds with hypoxia scores
lower than those of the control group in the two expert
networks as the effective anti-hypoxia drugs.

III. RESULT

In order to comprehensively and powerfully validate the
effectiveness and advancement of the method in this paper, sin-
gle cell morphology prediction method, simple feature extrac-
tion network prediction method, dense connectivity network
prediction method and attention network prediction method
were selected for performance comparison, and the screening
results were validated by using the concentration gradient
scheme of the known utility compounds and the correlation
coefffcient scheme of the oxidative stress bioindicators. The

TABLE I: Experimental results of cellular hypoxia morphol-
ogy recognition experiments

Datasets Accuracy Precision Recall F1
AC16-12H 0.806 0.817 0.823 0.806
AC16-24H 0.826 0.829 0.826 0.826
AC16-36H 0.970 0.962 0.976 0.968
AC16-48H 0.982 0.984 0.981 0.982

AC16-Hybrid 0.874 0.900 0.865 0.869
H9C2-24H 0.822 0.839 0.820 0.822
H9C2-36H 0.916 0.904 0.921 0.915
H9C2-48H 0.882 0.891 0.879 0.882

H9C2-Hybrid 0.874 0.879 0.875 0.874

accuracy, validity and sophistication of the method were ver-
iffed in terms of machine learning metrics, biological metrics
and cellular activity.

A. Results of cellular hypoxia morphology recognition exper-
iments

In this paper, AC16 and H9C2 were incubated with hypoxia
for different durations, and the model was trained on the
collected image data, and the results on the validation set
are shown in TableI. The data in the table show that the
model recognition becomes better as the incubation duration
increases. This suggests that for AC16, 48H of anoxic hourly
incubation can lead to an optimal anoxic morphological tran-
sition. And for H9C2, 36H is its optimal anoxic incubation
duration. In order to improve the generalization of the model
in the testing stage, we also used mixed dataset training for
model training. As can be seen in the table, the model in
this paper achieves F1 scores and accuracies of more than 0.8
for morphology classiffcation under multiple hypoxia duration
culture conditions for both cells, and the highest even reaches
0.98.

B. Comparisons to the State-of-the-Art Methods

1) Simple feature extraction network prediction method:
The Convolutional Neural Network (CNN) is a special type
of feedforward neural network characterized by local connec-
tivity and weight sharing [12]. As one of the core algorithms in
deep learning, it is widely used in the field of computer vision.
CNN serves as the foundational neural network architecture
for many tasks such as image segmentation, object detection,
and image classification models.

The convolutional layer is the most important component of
a convolutional neural network (CNN). It performs convolu-
tion operations on the input data using convolutional kernels
based on sliding windows, thereby extracting features from the
input data [13]. The parameters in the convolutional kernels are
updated through the backpropagation algorithm.

The Fully Connected Layers (FC) are an important struc-
ture within convolutional neural networks, acting as the
”classifier” [14]. These layers aggregate the features extracted
from the preceding layers and map the learned ”distributed
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feature representations” to the sample label space. Fully con-
nected layers typically appear in the final few layers of a
convolutional neural network, where they perform a weighted
sum of the previously designed features.

Normalization operations stabilize the distribution of inputs
in the intermediate layers of convolutional neural networks
within an appropriate range, accelerating the model’s conver-
gence process and enhancing its stability to inputs of different
sizes.

If a manually designed neural network relies solely on
matrix operations in convolution, simple pooling, and nor-
malization, it cannot effectively model and learn the complex
feature space within 2D images. Activation functions introduce
nonlinearity through simple function mappings, enhancing the
model’s learning and comprehension capabilities. The Softmax
activation function is a commonly used neural network acti-
vation function, primarily used for multi-class classification
problems. Its main purpose is to transform the output of a
neural network into a probability distribution. Specifically, the
Softmax function normalizes the output vector of the neural
network, ensuring that their sum equals 1, thereby transform-
ing the output vector into a probability distribution [15]. As a
result, the sum of probabilities for each class equals 1, with
each element of the output vector representing the probability
of that class.

A simple convolutional neural network consists of three
convolutional layers each using 3×3 kernels, followed by two
fully connected layers. Batch normalization is applied after
each convolutional layer, and the final fully connected layer
outputs a tensor of dimension 2 [16]. The output from this layer
passes through a Softmax activation function, enabling the
outputs to represent the probabilities of the two categories:
normal (0) and hypoxia (1).

As can be seen in TableII, the results indicate that the AC16
model performs worst at a cultivation duration of 24 hours,
with prediction accuracy improving as the cultivation duration
increases.However,it is unable to accurately model hypoxic
morphology for AC16,and it is especially difffcult to achieve
generalization under multiple time culture conditions. This is
due to the fact that both cells, AC16 and H9C2, have gradual
differences in morphology and individual differences with
the passage of time under hypoxic environments, resulting
in the fact that images obtained from culture environments
captured at different time intervals may contain cells that
fail to be completely hypoxic or have completed the hypoxic
morphology transition ahead of time, as shown in Figure
4. In addition, the morphology presented during mitosis of
AC16 cells is extremely similar to the hypoxic morphology,
which also causes interference in CNN model classiffcation.
This uncertainty in the dataset creates great difffculties for
model training. From the experimental results of the single-
cell morphology prediction method, it can also be seen that
the prediction effect of the single-cell pictorial CNN model
under 24h culture condition is signiffcantly lower than that
under 48h culture condition.

Fig. 4: Examples of cell culture images

2) Dense connectivity network prediction method: Dense
connections pass low-level features to high-level convolutional
blocks multiple times through skip connections, thereby sup-
plementing high-resolution information in the higher convolu-
tional layers. In a dense connection block, the input features
are first dimensionally reduced along the channels using a
1×1 convolutional kernel. Then, further feature extraction is
performed on the dimensionally reduced features using a
3×3 convolutional kernel. To prevent overfitting in CNNs,
dropout regularization is applied at the end of the dense
connection block [17].A bottleneck layer composed of 1×1
convolutional kernels and average pooling is added in multiple
dense connection blocks to both reduce the number of channels
and fuse features from different channels, thereby preventing
excessive information aggregation in certain channels while
also compressing the model.

From the experimental results(Table III):, it can be observed
that dense connections significantly improve both the AC16
dataset at a single cultivation time and the mixed AC16
dataset at different cultivation times. However, there are still
deficiencies in the recall metric.

3) Attention network prediction method: In convolutional
neural networks, convolutional kernels extract local informa-
tion from images through convolutional operations, weighting
information equally across each region of the image using
a sliding window. However, when humans observe images,
they tend to focus on specific areas, a natural ability of
the human brain known as visual attention mechanism. The
attention mechanism fundamentally adjusts the weight distri-
bution of the network towards important regions of interest,
enhancing the model’s ability to extract and represent features
of the focused objects while suppressing irrelevant features
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TABLE II: Experimental results in comparison with existing methods

method datasets F1 Accuracy Precision Recall

Single-cell morphology prediction method AC16-24h 0.703597 0.735056 0.694856 0.712561
AC16-48h 0.913023 0.930451 0.868515 0.922339

Our method AC16-24h 0.854384 0.848651 0.817972 0.894188
AC16-48h 0.976621 0.977165 0.997297 0.956785

TABLE III: Experimental results of ablation study

methods datasets F1 Accuracy Precision Recall

baseline

AC16-24h 0.794687 0.828631 0.787931 0.704123
AC16-48h 0.912641 0.932145 0.867227 0.921725
AC16-72h 0.932426 0.929246 0.804503 0.961900

AC16-Hybrid 0.852473 0.864220 0.817241 0.940080

denseNet

AC16-24h 0.762424 0.785822 0.857952 0.686038
AC16-48h 0.958079 0.958639 0.968226 0.948142
AC16-72h 0.946227 0.948262 0.997759 0.899757

AC16-Hybrid 0.944032 0.945556 0.962726 0.926050

AttentionNet

AC16-24h 0.800564 0.787750 0.750992 0.857143
AC16-48h 0.972609 0.972766 0.978626 0.976664
AC16-72h 0.924864 0.915000 0.927854 0.911891

AC16-Hybrid 0.955899 0.976250 0.977138 0.974662

Our method

AC16-24h 0.854384 0.848651 0.817972 0.894188
AC16-48h 0.976621 0.977165 0.997297 0.956785
AC16-72h 0.978606 0.979156 0.995902 0.961900

AC16-Hybrid 0.962770 0.964250 0.997841 0.940080

and reducing interference from unrelated objects. Attention
aims to combine the advantages of attention mechanisms
in both channel and spatial domains to compensate for the
shortcomings in handling feature information across different
dimensions.

The feature dimension obtained after convolutional layers is
usually large, making it challenging for computers to process
under limited computational resources. Pooling layers can
reduce the feature dimension while retaining the effective
information recorded in the feature matrix through pooling
operations. The commonly used pooling operations include
max pooling and average pooling [18].

The hybrid attention mechanism combines average pooling
and max pooling to respectively obtain comprehensive and
salient features from channel and spatial dimensions. These
features are then fused using a multi-layer perceptron for
channel dimension pooling features and via 1×1 convolution
for spatial dimension pooling features. By incorporating the
hybrid attention mechanism, CNNs can focus more on the
parts of images that are most beneficial for image classification
and suppress interference from irrelevant information when ex-
tracting multi-cellular features and establishing cellular image
models.

From the experimental results(Table III), it can be seen that
the hybrid attention mechanism significantly improves both
the AC16 dataset at a single cultivation time and the mixed
AC16 dataset at different cultivation times. However, there

are still deficiencies in accuracy under the 24-hour cultivation
condition.

4) Dense Attention Network prediction method: Through
the two pre-experiments mentioned above, we found that dense
connections and attention mechanisms each have different
improvements on both the single-time cultivation and mixed
datasets. In order to integrate the advantages of both and
achieve a complementary effect, we propose a new cellular
image CNN model.

In the Dense Attention CNN, we introduce a hybrid atten-
tion mechanism that considers both the position and content
of input elements simultaneously, enabling more effective
capture of essential information within the input. However,
to further enhance the predictive performance of the CNN,
we refine the hybrid attention mechanism by incorporating
dropout and skip connections, forming the Dense Attention
Module. Dropout randomly suppresses certain neurons during
training to prevent overfitting, thereby improving the model’s
generalization ability. This allows the model to better focus
on important features within the input during training while
avoiding excessive fitting to non-essential features. Skip con-
nections, on the other hand, are a special type of connection
that directly passes the output of the hybrid attention pro-
cessing to subsequent convolutional layers. This effectively
compensates for any potentially lost vital information after
hybrid attention processing, preventing information loss and
enabling the model to consider various features within the
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input more comprehensively.
With the aforementioned improvements, the predictive per-

formance of the Dense Attention CNN on the AC16 dataset
has been significantly enhanced(Table III). It can be observed
that the Dense Attention Module, augmented with dropout and
skip connections, notably improves the model’s accuracy and
generalization capability.

C. Ablation Study

In this paper, a series of ablation experiments are con-
ducted on the dense attention module, and the results of the
experiments are shown in TableIII. From the table, it can be
seen that both the dense connectivity module and the attention
module are defective in F1 and accuracy metrics. In addition,
for the cellular morphology that is only cultured for 24h,
it is difffcult for the ffrst three methods to achieve an F1
score of 0.8 or more. Therefore, the dense attention module
designed in this paper can combine the different advantages of
dense connectivity and attention, which improves the accuracy
and generalization of the CNN model for cell morphology
recognition under various culture conditions.

D. Validation of the effectiveness of anti-hypoxic drug cultures

In order to further verify the practical value of the present
method, four known antioxidant drugs were used for 48h
antioxidant drug culture of AC16 hypoxic cells, and the
hypoxic morphology scores were predicted by using the cell
phase difference plots of the cells cultured with the antioxidant
drugs by the present method, and the speciffc results are shown
in Table IV, where p1 denotes the hypoxia morphology score
derived from the morphology prediction network.

From the experimental results in the table,it can be seen
that the concentration of hypoxia-protective drugs increases,
the predicted hypoxia phenotype score by the CNN shows a
decreasing trend. This result indicates that when the concen-
tration of hypoxia-protective drugs reaches 10µm, it exhibits
a significant protective effect against hypoxia in cells, demon-
strating the biological effectiveness of the method proposed in
this study.

E. Validation of cellular oxidative stress indicators

In order to verify the consistency and correlation between
the predictive effect of the present model and the oxidative
stress indicators, H9C2 cells were cultured in hypoxia for 36h,
and three cellular biochemical indicators were collected: lac-
tate dehydrogenase (LDH), superoxide dismutase (SOD), and
malondialdehyde (MDA), and hypoxia scores were predicted
using the present method on the collected images.

Lactate dehydrogenase (LDH) [19]is a glycolytic enzyme
primarily responsible for catalyzing the conversion of pyruvate
to lactate within the body. LDH is present in the cytoplasm
of all tissues and cells in the body, with relatively higher
levels found in the kidneys. Superoxide dismutase (SOD) is
an antioxidant enzyme present in organisms. It can convert
superoxide anions into hydrogen peroxide, which is then
broken down into water by catalase, thereby eliminating the

Fig. 5: Correlation analysis chart of the three indicators with
the predicted scores

Fig. 6: Changes in biochemical indices at different incubation
times

harmful effects of reactive oxygen species on the human
body [20]. Malondialdehyde (MDA) is one of the final products
of lipid peroxidation and can serve as an indicator of oxidative
stress.

The correlation analysis of biochemical indices and hypoxia
score was performed using Person correlation coefffcient and
the results are shown in Figure 5. From the heat map, it can
be seen that the prediction of hypoxia morphology by the DL
model trained on the dataset obtained from the mixed time
incubation had high correlation with LDH, SOD and MDA,
with the highest correlation with SOD and MDA, negative
correlation with SOD and positive correlation with MDA.
From Figure 6, it can be seen that with the lengthening of
incubation time, both MDA and LDH indexes are elevated
due to the increase in the degree of hypoxia of cells, while
SOD is negatively correlated with the incubation time, which
is in line with the results of the correlation analysis mentioned
above.

F. Cellular anti-hypoxia drug screening practices

Based on the deep learning multicellular portrait classiff-
cation model, a high-throughput compound screening system
was constructed in this paper for the discrimination of antihy-
poxia activity of thousands of compounds. Predictive scoring
was performed simultaneously by AC16 model and H9C2
model, and the two models voted on the anti-hypoxia utility
of the compounds, and the compounds that received two votes
were the ffnal effective anti-hypoxia compounds. Using this
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TABLE IV: Results of drug validation experiments

acid type(µm) glycyrrhizic(5) glycyrrhizic(10) oleanolic(5) oleanolic(10) acethydramine(5) acethydramine(10)
p1 0.893293 0.4618 0.819487 0.483541 0.686431 0.218935

TABLE V: Results of screening experiments of some anti-
hypoxic compounds

Number Compounds H9C2 AC16
1-A-3 Suberosin 0.2704 0.282695
7-G-9 3,4-Dimethylbenzoic acid 0.1021 0.2535
1-C-7 3-Hydroxyhippuric acid 0.4605 0.466638
7-G-3 lsoliensinine 0.3675 0.2164

system, this paper accomplished the prediction of antioxidant
activity of thousands of compounds and successfully screened
out some compound molecules with antioxidant potency.
The experimental data of four effective compounds,namely
Suberosin,3,4-Dimethylbenzoic acid,3-Hydroxyhippuric acid
and Isoliensinine are given in TableV.

Two kinds of cells were cultured in hypoxia after adding the
compounds to be screened, and five pictures were collected
for the culture results and two models were used for the
recognition of hypoxia morphology, and the average score
obtained is the data in the table. Therefore, the lower the
experimental data, the lower the probability of cell hypoxia
and the better the anti-hypoxia effect of the compounds.

IV. DISCUSSION

The deep learning-based cell image screening method for
hypoxia-resistant compounds is a process that utilizes machine
learning techniques to identify and screen compounds that may
possess antioxidant properties. This method primarily relies on
the deep analysis of cell images to reveal potential patterns and
features related to cell morphology and compound antioxidant
activity [21].

In this study, we first preprocess the cell images, including
contrast enhancement, image smoothing, edge detection, and
other steps, to better highlight the structural and morpholog-
ical features of the cells, thereby removing noise, improving
image quality, and extracting useful features. Subsequently,
we employ an optimized deep learning model, specifically a
dense attention network model, to train and learn from the
preprocessed images. After the model training is completed, its
performance is evaluated and validated on a validation set, and
the correctness of the model is verified using compounds with
known utility. The model’s output can serve as an indicator of
the antioxidant activity of the compounds, providing a basis
for subsequent screening. To ensure the accuracy of the model
screening, by combining the votes and scores of multiple
expert models, we can further screen out compounds that
exhibit high antioxidant activity and have potential antioxidant
properties in the model predictions.

In today’s society, diseases related to hypoxia pose a serious
threat to human health. Therefore, screening and developing

drugs with hypoxia-resistant capabilities is an important task
in the current pharmaceutical field. The application of the
results of this project will significantly accelerate this process,
improve drug development efficiency, reduce costs, and poten-
tially provide more effective treatment options for patients.

The results of this project have broad application prospects
in the field of drug screening, with far-reaching implications
for the development of the pharmaceutical industry and the
improvement of human health conditions. Leveraging deep
learning technology, we are hopeful to make groundbreaking
progress in the field of drug development, bringing good news
to humanity.
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Algorithm 1 Edge Extraction Algorithm for Multi-cell

Input:
Input = {xi,j} (i = 1, ...,W, j = 1, ...,H)

Output:
Edge = {yi,j} (i = 1, ...,W, j = 1, ...,H)

1: The Gaussian filter function G(i, j) = 1
2πσ2 e

− i2+j2

2σ2 is

utilized to generate a 3×3 Gaussian filter kernel Kernel(i,

j), where i and j represent the values of the horizontal

and vertical coordinates, respectively, and σ represent the

width of the Gaussian function.

2: Convolution calculation of the input image using

the generated 2D Gaussian kernel: Gconv(i, j) =∑k
i=1

∑k
j=1(G(i, j)×Kernel(i, j)). Thus, the gray scale

map after removing Gaussian noise Gconv(i, j) is ob-

tained.

3: The Sobel operator composed of two 3×3 matrices Sx

and Sy is used to perform matrix multiplication op-

erations in the x-direction and y-direction, respectively,

on the grayscale map after Gaussian filtering process-

ing, to obtain the gradient intensity matrix: Gx(i, j) =

Sx(i, j) × Gconv(i, j), Gy(i, j) = Sy(i, j) × Gconv(i, j),

Gxy(i, j) =
√
Gx(i, j)2 +Gy(i, j)2 .

4: Utilizing non-maximum suppression to retain the points

with the strongest pixel gradient, eliminating the spu-

rious response from edge detection: Gmax(i, j) =

(Gxy(i, j) > Gx(i, j)&&Gxy(i, j) > Gy(i, j))?1 : 0.

5: Hysteresis thresholding to eliminate pixel

points whose pixel gradient strength is

outside the threshold range: Gthreshold(i, j) =

(Gmax(i, j) > 20&&Gmax(i, j) < 60)?1 : 0.

6: Isolated weak edge suppression and strong edge pixel

flooding:

7: For yij ∈ Gthreshold

8: IF yi+1,j−1 ∈ Gmax: yi+1,j−1 = 1

9: IF yi+1,j−1 ∈ Gmax: yi+1,j+1 = 1

10: IF yi−1,j+1 ∈ Gmax: yi+1,j−1 = 1

11: IF yi−1,j−1 ∈ Gmax: yi+1,j−1 = 1

12: IF yi−1,j ∈ Gmax: yi+1,j−1 = 1

13: IF yi+1,j ∈ Gmax: yi+1,j−1 = 1

14: IF yi,j−1 ∈ Gmax: yi+1,j−1 = 1

15: IF yi,j−+1 ∈ Gmax: yi+1,j−1 = 1

16: return Edge = {yi,j} (i = 1, ...,W, j = 1, ...,H)
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Algorithm 2 Morphological feature fusion network algorithm

Input:
Input = {xi,j} (i = 1, ...,W, j = 1, ...,H)

Output:
p = {p0, p1} where p0 denotes the probability of belong-

ing to the normal form and p1 denotes the probability of

belonging to the hypoxic form.

1: Preliminary feature extraction:

F1(i, j) = Σk
i=1Σ

k
j=1 (xi,j ×Kernel(i, j))

2: Advanced morphological feature extraction using the

dense attention module: Fatt = DenseAtt(F1)

3: Understanding and fusion of high-level morphological fea-

tures using bottleneck layers: Fbottle = Bottleneck(Fatt)

4: Further advanced morphological feature extraction using

the dense attention module: F
′

att = DenseAtt(Fbottle)

5: Global feature fusion:

Fglobal(k) = maxF
′

att(k) where k denotes the feature

map channel dimension index.

6: Hypoxia score prediction using global features of cell

morphology:

Ffinal = W × Fglobal(k) +B

p0 = eFfinal(0)∑
Ffinal

, p1 = eFfinal(1)∑
Ffinal

7: return p = {p0, p1} where p0 denotes the probability

of belonging to the normal form and p1 denotes the

probability of belonging to the hypoxic form.
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