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Abstract— In deep learning, the quality of ground truth 

training data is crucial for the resulting performance. 

However, depending on applications, collecting a sufficient 

amount of quality data from a realistic setting is problematic. 

In this case, data augmentation can play an important role as 

long as augmentation ensures data quality and diversity for 

training, preferably in an unsupervised way. Recently, a 

number of GAN variants have been emerged for improved 

quality in data augmentation. Although successful, further 

improvement is necessary for enhancing diversity in addition 

to quality in data augmentation. In this paper, we propose a 

GAN-based approach to self-supervised augmentation of 

quality data based on Classification-Reinforced GAN referred 

to here as CLS-R GAN, to extending diversity as well as 

quality in data augmentation. In CLS-R GAN, a discriminator-

independent classifier additionally self-trains the generator by 

classifying the fake data, as well as augmenting the real data in 

an unsupervised way. Extensive experiments were conducted, 

including an application to augmenting liver ultrasonic image 

data, to verify the effectiveness of CLS-R GAN based on 

standard evaluation metrics. The results indicate the 

effectiveness of CLS-R GAN for improved quality and 

diversity in augmented data. 

Keywords— GAN, Unsupervised Data Augmentation, 

Generator, Self-Training 

I. INTRODUCTION  

GAN frameworks provide an effective means for self-
supervised data augmentation with the fake data generated 
by their generators. To date, several GAN variants have 
been proposed for the sake of maximization of generated 
fake data’s qualitie and diversities. To this end, many GAN 
variants incorporate such data attributes as clusters and 
classes as well as self-supervised data augmentation into the 
adversarial framework, often, with a classifier attached to 
the discriminator with shared weights. For example, 
ClusterGAN [1] and its derivatives [2,3,4,5] exploit the 
clustering structure embedded in fake data to enhance the 
quality in data generation with additional training of the 
generator based on an attached encoder. ACGAN [6], 
InfoGAN [8] and their derivatives [7,9,10] exploit the class 
structure and data attributes, instead, by using a classifier 

attached to the discriminator with shared weights. They 
achieve quality improvement in data generation by imposing 
the generator to follow class and attribute configurations 
embedded in the real and fake data. On the other hand, 
DAGAN [11], SSGAN [12] and their derivatives [13,14,15] 
introduce an augmentation of real and fake data in GAN 
frameworks by applying self- supervised data 
transformation, especially, for emphasizing data diversity. 
Note that, by “quality,” we mean that the generated data are 
as real as the real data, while, by “diversity,” we mean that 
the generated data genuinely cover the distribution of real 
data without bias. The state-of-the-art approaches 
introduced above have contributed, on their own sake, to the 
advancement of GAN-based data generation in terms of data 
quality as well as diversity. However, they are also subject 
to certain performance limitations due to the issues 
associated with goal inconsistency [12] and constraint in 
data augmentation [13]. A necessity to break through the 
current performance limit exists by overcoming the above 
issues. Goal inconsistency takes place in GAN frameworks 
due to additional learning of class, cluster and attribute 
distributions with a classifier shared its weights with the 
discriminator, which disturbs the adversarial framework to 
converge to real data distribution. To mitigate the issue of 
goal inconsistency, attempts [21,26] were made, with a 
limited success, to have adversarial competition applied to 
both data and class/attribute distributions at some expense of 
stability in convergence. Nonetheless, goal inconsistency 
remains as an issue to overcome for further advancement in 
GAN-based data generation. On the other hand, constraint in 
data augmentation takes place as the portfolio of data 
transformation should be restricted to avoid the augmented 
data altering the distribution of real data [13]. Such 
constraint in data augmentation serves as a limiting factor 
for self-supervised augmentation of real and fake data to 
improve diversity in GAN-based data generation. All in all, 
achieving both high quality and high diversity in GAN-
based data generation remains as a challenge.  

In this paper, we propose an approach to GAN-based 
data augmentation that offers both high quality and high 
diversity in data generation and clustering. The proposed 
GAN framework is referred to here as “CLS-R GAN.” In 
CLS-R GAN, an attached yet discriminator-independent 
classifier corrects the fake data qualified for self-training the 
generator as well as for self-augmenting the real data. An 
overview of the proposed approach is presented in Section 
Ⅲ. 

*Corresponding author : Sukhan Lee(lsh1@skku.edu) 
This work was supported, in part, by “5G Edge Brain Based Intelligent 
Manufacturing” project IITP-2022-0-00067, in part, by AI Graduate School 
Program, Grant No.2019-0-00421, and by ICT Consilience Program, IITP-
2020-0-01821, sponsored by the Korean Ministry of Science and 
Information Technology (MSIT), and, in part, by “Deep Cross-Sensory 
Transfer for Visually Impaired” project, 2020R1A2C200956811, of NRF 
s p o n s o r e d  b y  K o r e a  M i n i s t r y  o f  S c i e n c e  a n d  I C T .



II. RELATED WORK 

GAN [23] was introduced by pairing a discriminator and 
a generator competing adversarially, in which the generator  
is trained to generate fake data by closely following the 
distribution of real data while the discriminator is trained to 
refine the distribution of real data by discriminating fake 
data from real data. Such capability of GAN in adversarial 
generation of fake data makes GAN a natural candidate for 
self-supervsed augmentation of real data. However, further 
improvement of original GAN has been needed for 
generation of quality fake data in data augmentation, apart 
from neccesity to solve the instability or mode collapse 
problem in training. Many improved variants of GAN have 
emerged to deal such need to address those problems. As the 
first case, CGAN [16] was proposed to generate fake data in 
target categories on the basis of specific conditional vectors. 
Meanwhile, ACGAN [6] is its improved version, allowing 
the discriminator to check that generated fake data are in 
target classes on the basis of attached clasifier with shared-
weights. In the variant of InfoGAN [8], the discriminator 
checks the classes of generated fake data applying 
mechanism of information maximization based on class 
attributes. Besides, WGAN [17,18] was also proposed with 
the aim of stability enhancement in the original GAN, 
thorugh application of gradient clipping and penalty for 
efficient solution in the mode collapse problem. 

For generation of quality data, apart from structuring 
fake data with class labels, also clustering can also be 
directly applied to fake data generation [20]. In this respect, 
ClusterGAN [1] was the first where generated fake-data 
were clustered by attaching an encoder, and where cyclic 
loss associated with clustering consistency was minimized. 
To improve clustering functions, SEMI-ClusterGAN [19] 
applies information maximization to clustering. Recently, an 
extensive incorporation of clustering has been proposed, 
with top-priority of diversity improvement for the generated 
fake data [22]. And for this, feature embedding clusters have 
been used in CGAN to augment real-data used for 
generating GAN-based fake data. 

As far as self-supervised data augmentation is 
concerned, traditionally, a predefined set of data 
modification, such as image rotation, flipping, cropping, as 
well as corruption with noise, has been used. On the other 
hand, GAN and its variants can generate fake data which 
will be used for data augmentation. For instance, in the 
recently proposed SSGAN and DAGAN, we have shown 
remarkable results using methods, according to which 
generator and discriminator can be learnt by rotating or 
augmenting images, stabilizing the learning of GAN. 
According to [21], there have been studies showing that the 
GAN can be better learnt when using generated data from 
GAN learning, compared to when using only real data. And 
in [15], upgrading generator can be performed by 
augmenting both real and fake data. In the study of [13], it 
shows that using data augmentation excluding rotation and 
flip while training GAN can affect the generator negatively 
in learning real data distribution. 

III. CLS-R GAN: AN OVERVIEW 

The proposed CLS-R GAN consists of the following 
three phases: 1) The classifier pre-training phase, the 
attached classifier is pre-trained with the ground truth data 
independently of the discriminator training. 2) The 

adversarial training phase, the generator and discriminator 
play a min-max game so as to generate fake data in line with 
real data distribution. 3) The generator self-training phase , 
further tranining is made with the qualified fake data, which 
were chosen by the attached independent classifier. Fig. 1 
illustrates the architecture of the proposed CLS-R GAN, 
where phase (1) and (3) are represented. 

 

 
Fig. 1 Overview of Architecture of CLS-R GAN. 

The proposed generator self-training is done in 
conjunction with adversarial training by minimizing 
additional quality loss, by which the generator can generate 
fake data more in consistent with their classes. In addition, 
the pre-trained classifier is used for selecting those fake data 
qualified for data augmentation. Next, we present more 
details on the proposed generator self-training phase. 

IV. GENERATOR SELF-TRAINING PHASE 

 
 

Fig. 2 Flows associated with the clustering and self-improvement loop 
(respectively marked in blue and red/purple) in the generator self-training 

phase. 

 

Fig. 2 illustrates the proposed self-training process 

which consists of clustering and self-improvement loops 

(respectively marked in blue and red/purple).. And we found 

that it provides extra gradients in weight training for both 

generator and encoder, obviously more than original 

adversarial training. As such, it turned out to serve better for 

generated fake-data’s quality improvement. In the self-

improvement loop, the fake data were classified by the pre-

trained classifier so that the generator would be  trained 

based on the generated fake data with the class label 

provided by the classifier as ground truth data. In the 

clustering loop, the generator and encoder are trained in 

such a way that the generated fake data are well-clustered by 

class-label assigned to generator input. 

 
Fig. 3 illustrates typical examples of fake data generated 

by the generator after the generator self-training is 
completed. Notice the high quality of generated fake data in 
terms of clustering and classification properties.  



 

 

Fig. 3 Typical examples of fake data generated by the generator after the 
generator self-training is completed. (a) without bias MNIST(top) and 
Fashion-MNIST(bottom) (b) with size bias MNIST(top) and Fashion-

MNIST(bottom) (c) with contents bias MNIST(top) and Fashion-
MNIST(bottom). 

 

Fig. 4 illustrates some of the highly deformed instances 
of qualified fake data associated with MNIST(a) and 
Fashion-MNIST(b) data that are selected by the independent 
classifier. Fig. 4 indicates that the generator self-training 
phase is especially effective for expanding the diversity in 
data augmentation. 

 

 

Fig. 4 Highly deformed examples of qualified fake data for MNIST(a) and 
Fashion-MNIST(b) that are selected by the independent classifier. 

 

For data augmentation, we proposed a criteria for 
selecting quality fake data eligible for augmentation, for 
which we used the consistency of class labels between the 
generator input and the classifier output as well as the 
classification probability as the selection criteria. Note that, 
by adjusting the classification probability in the selection 
criteria, we can control the quality and diversity in data 
augmentation. 

 

V. EXPERIMENTS 

A. Evaluation metrics 

To evaluate the performance of the proposed CLS-R 
GAN, we adopted the same standard metrics for quality 
assessment as used by other approaches under comparison. 
They include NMI, ARI, IS and FID. Besides, we also 
evaluated the generated fake data based on the accuracy and 
diversity measure, especially, for the analysis of the 
generated fake data in terms of diversity. Here, we define 
“Diversity” metric (Div.) in terms of the number of different 
species in individual classes composed of the fake dataset 
used in augmentation, similar to the way diversity is defined 
in biology. We determine the number of different species in 
a class based on within-class clustering of fake data by 
assigning inter-distances between fake data with the feature 
similarity index measure (FSIM). Then, diversity is 
measured by applying Gini-Simpson index to the number of 
species in classes. Note that NMI and ARI metrics are for 

evaluating the quality of clustering based on externally 
provided class labels such that the higher the value, the 
better the clustering quality is. FID captures the similarity of 
the generated fake data to the real data such that the lower 
the value, the better the quality of generated fake data is, 
while IS score becomes higher when the generated fake data 
are with higher probability in classification yet with more 
equally distributed class labels. On the other hand, the 
proposed diversity of measure is intended to indicate the 
variety of different species within individual classes such 
that the higher the diversity  of measure, the higher the 
variety is. Notice that we introduced an, externally provided, 
high accuracy classifier solely for the evaluation of accuracy 
in class labels. For the high accuracy classifier, we adopted 
an architecture specialized for the classification of MNIST 
and Fashion-MNIST datasets that we used in experiments. 
To make the high accuracy classifier effective for 
classifying diversified fake data, we augmented the original 
60K MNIST and 60K Fashion-MNIST training data to 96K 
for each by adding 36K MNIST and 36K Fashion-MNIST 
fake data that are manually annotated. The trained high 
accuracy classifier shows the accuracies of 99% and 97% 
for MNIST and Fashion-MNIST datasets, respectively, 
when tested with the original 10K MNIST and 10K 
Fashion-MNIST testing data plus 9K MNIST and 9K 
Fashion-MNIST testing data randomly selected from the 
manually annotated fake data. 

B. Experimental setup 

For comparative performance evaluation of the proposed 
CLS-R GAN, we used MNIST and Fashion-MNIST 
datasets for training and testing. For fair comparison, we 
trained and tested the CLS-R GAN and other GAN variants 
under comparison based on the same datasets. Also, in order 
to investigate the effect of data bias on performance, we 
prepared for three types of training datasets: 1) The standard 
MNIST and Fashion-MNIST datasets provided originally by 
publicly available databases . 2) The MNIST and Fashion-
MNIST datasets with size bias, in which, for a chosen class, 
only a small number of class data are randomly selected and 
repeated to implement the data bias in size. 3) The MNIST 
and Fashion-MNIST datasets with content bias, in which, 
for a chosen class, only a single species of data in terms of 
feature similarity is selected and repeated to implement the 
data bias in content. More specifically, the standard MNIST 
and Fashion-MNIST datasets consist of 60K training and 
10K testing data for each that amount to about 6K training 
and 1K testing data assigned to 10 classes. In the case of 
size biased MNIST and Fashion-MNIST datasets, we 
randomly selected a small number of data, say 20 data, from 
the class 5 datasets and repeated the randomly selected data 
to make up the original number. On the other hand, in the 
case of content biased MNIST and Fashion-MNIST 
datasets, we randomly selected a data from the class 5 and 
collected those data in the class 5 that are similar to the 
selected data with Structure Similarity Index Measure 
(SSIM) greater than 0.7, while removing out all the rest. 
Then, we repeated the collected similar data to make up the 
original number. 

C. Evaluation of CLS-R GAN  

We evaluated the performance of CLS-R GAN such that 
we can assess the generator self-training phase. The 
evaluation is done in comparison with the state-of-the-art 
GAN variants, including ACGAN, ClusterGAN. The reason 



why we have selected these variants for ACGAN and 
ClusterGAN is that ACGAN is well known as generate 
diverse image and ClusterGAN is well known as cluster the 
fake image well, respectively. The metrics used in 
evaluation include NMI, ARI, FID, IS, Accuracy (ACC.) 
and Diversity (Div.), as described in Section Ⅴ.A. For fair 
comparison, we trained and tested the above GAN variants 
under comparison based on the same respective training and 
testing datasets. 

Tables 1 and 2 show the performance evaluated based on 
the without bias MNIST and Fashion-MNIST datasets, 
respectively, whereas Tables 3 and 4 show the performance 
evaluated based on the respective MNIST and Fashion-
MNIST datasets modified with size and content biases.  

 
Table 1. Performance of CLS-R GAN compared with the state-of-the-art 

GAN variants: MNIST dataset without data bias. 

 

Metrics NMI ARI FID IS Acc.  Div.  

ACGAN 0.839 0.727 148.0 1.86 92.05 0.544 

ClusterGA
N 

0.916 0.865 94.64 1.85 0.10 0.535 

CLS-R 
GAN 

0.980 0.980 60.46 1.98 99.84 0.720 

 
Table 2. Performance of CLS-R GAN compared with the state-of-the-art 

GAN variants: Fashion-MNIST dataset without data bias. 

Metrics NMI ARI FID IS Acc. Div. 

ACGAN 0.736 0.68
4 

161.31 2.10 80.47 0.61
8 

ClusterGA
N 

0.625 0.47
4 

471.77 2.29 11.59 0.66
1 

CLS-R 
GAN 

0.966 0.98 119.89 2.73 99.96 0.79 

Tables 1 and 2 indicate that the proposed CLS-R GAN 
provides superior performance to the state-of-the-art GAN 
variants. Especially, the superiority in performance becomes 
more evident when the augmentation criteria, zc==zclassout, 
is incorporated into data augmentation. 

 
Table 3. Performance of CLS-R GAN compared with the state-of-the-art 

GAN variants: MNIST dataset with data bias(size/content). 

 

Metrics NMI ARI FID IS Acc.  Div.  

ACGAN 0.765 
/0.768 

0.73 
/0.82 

124.54 
/143.96 

1.76 
/1.97 

87.67 
/82.66 

0.57 
/0.51 

ClusterGA
N 

0.883 
/0.854 

0.84 
/0.81 

111.41 
/133.24 

1.78 
/1.80 

9.40 
/0.59 

0.59 
/0.51 

CLS-R 
GAN 

0.988 

/0.976 

0.98 

/0.97 

103.95 

/105.9 

1.98 

/1.95 

99.75 

/100 

0.70 

/0.69 

 
Table 4. Performance of CLS-R GAN compared with the state-of-the-art 

GAN variants: Fashion-MNIST dataset with data bias(size/content). 

 

Metrics NMI ARI FID IS Acc.  Div.  

ACGAN 0.724 
/0.641 

0.86 
/0.70 

150.53 
/324.58 

2.01 
/1.13 

80.24 
/72.56 

0.48 
/0.22 

ClusterGA
N 

0.642 
/0.725 

0.49 
/0.62 

498.32 
/158.80 

2.11 
/1.96 

16.86 
/1.60 

0.65 
/0.53 

CLS-R 
GAN 

0.95 

/0.98 

0.99 

/0.98 

131.85 

/138.74 

2.71 

/2.56 

99.99/ 

98.3 

0.76/

0.59 

Tables 3 and 4 indicate that, similar to the comparative 
evaluation based on the original MNIST and Fashion-
MNIST datasets, the proposed CLS-R GAN with the 
generator self-training phase shows top-tier performance for 
the datasets including size and content biases. 

 

VI. ABLATION STUDY 

In this section, we examine effects of the application of 
quality loss in the network, in order to clarify: (a) whether 
quality loss allows the generator to have more diverse fake 
data, and (b) whether the encoder leads the generator to 
cluster fake data more in efficient way. In this study, we 
have artificially synthesized CLS-R GAN variants by either 
removing quality-loss or encoder, referred to as ‘CLS-R 
GAN without quality loss’ or ‘CLS-R GAN without 
encoder’, respectively. Doing so, further evaluation of the 
proposed qualiyt loss and encoder effect can be fully made. 
As described in Section V.A., the used metrics include NMI, 
ARI, IS, and Div. We have trained and evaluated those 
variants based on the same respective training and testing 
datasets for a fair comparison. 

A. With quality loss CLS-R GAN vs Without quality loss 

CLS-R GAN.  

We compared the diversity in each case with and 
without using image quality loss by evaluating diversity 
metrics for class diversity measure(Div.) and IS. 

Tables 5 and 6 show the performance with and without 
quality loss evaluated based on the biased and unbiased 
MNIST and biased and unbiased Fashion-MNIST datasets, 
respectively. 

 
Table 5. Comparison between CLS-R GAN with and without quality loss, 

based on MNIST datasets with or without bias. 

 
Metrics IS Div. IS Div. IS Div. 

Dataset MNIST MNIST size 
bias 

MNIST content 
bias 

CLS-R 
GAN with 

Quality loss 

1.98 0.72 1.98 0.70 1.95 0.69 

CLS-R 
GAN 

without 
Quality loss 

1.35 0.49 1.17 0.40 1.02 0.36 

 
Table 6. Comparison between CLS-R GAN with quality loss and without 

it, based on biased and unbiased Fashion-MNIST datasets. 

 

Metrics IS Div. IS Div. IS Div. 

Dataset Fashion-
MNIST 

Fashion-MNIST 
size bias 

Fashion-MNIST 
content bias 

CLS-R 
GAN with 

Quality loss 

2.73 0.79 2.71 0.76 2.56 0.59 

CLS-R 
GAN 

without 
Quality loss 

2.09 0.58 1.88 0.55 1.73 0.43 

Table 5 shows comparative evaluation based on biased 
and unbiased MNIST datasets. Meanwhile, in Table 6 the 
comparision is based on biased and unbiased Fashion-
MNIST datasets with and without the quality loss. As a 
result, we identified that the proposed CLS-R GAN with 
quality loss does indicate superior performance in terms of 
diversity than CLS-R GAN without quality loss.  

B. CLS-R GAN with encoder vs CLS-R GAN without 

encoder.  

Subsequently, to examine effectiveness of encoder for 
clustering, we compared performance of CLS-R GAN 



variants between with and without encoder, and also 
evaluated clustering metrics for NMI and ARI. 

Table 7 and 8 show comparison for CLS-R GAN 
between  with and without encoder.  

 
Table 7. Comparison of with CLS-R GAN with and without encoder based 

on biased and unbiased of MNIST datasets. 

 

Metrics NMI ARI NMI ARI NMI ARI 

Dataset MNIST MNIST size 
bias 

MNIST content 
bias 

CLS-R 
GAN with 
Encoder 

0.98 0.93 0.98 0.98 0.97 0.97 

CLS-R 
GAN 

without 
Encoder 

0.33 0.44 0.23 0.21 0.20 0.15 

 
Table 8. Comparison of with CLS-R GAN with and without encoder based 

on biased and unbiased of Fashion-MNIST datasets. 

 

Metrics NMI ARI NMI ARI NMI ARI 

Dataset Fashion-
MNIST 

Fashion-MNIST 
size bias 

Fashion-MNIST 
content bias 

CLS-R 
GAN with 
Encoder 

0.96 0.98 0.95 0.99 0.98 0.98 

CLS-R 
GAN 

without 
Encoder 

0.32 0.30 0.27 0.32 0.14 0.25 

In the Table 7, the comparison is based on the biased and 
unbiased MNIST dataset, while in Table 8 it is based on 
biased and unbiased of Fashion-MNIST dataset. And those 
findings point out that the proposed CLS-R GAN variant 
with encoder performs with higher superiority in clustering, 
than the one without encoder. 

C. Analysis performance of CLS-R GAN using t-SNE.  

For further exploration on  improved performance of 
CLS-R GAN, we also conducted experiment to compare the 
t-SNE visualization-results of ClusterGAN and that of CLS-
R GAN. Figures 5 to 7 illustrate the t-SNE Visualization 
clustering results based on biased and unbiased MNIST 
dataset. Figure 8, 9 and 10 illustrate the t-SNE visualization 
clustering results, based on biased and unbiased Fashion-
MNIST dataset, respectively from the viewpoint of 
generator and that of high-accuracy classifier. 

 

 

Fig 5. Visualization of t-SNE result of fake data clustering generated by the 
generator based on without bias MNIST dataset from the perspective of 

generator and high accuracy classifier, respectively: (a) the result of 
generator view point of ClusterGAN t-SNE (top) and CLS-R GAN t-SNE 

(bottom) (b) the result of high accuracy classifier view point of 
ClusterGAN t-SNE(top) and CLS-R GAN t-SNE (bottom). 

 

 

 

Fig 6. Visualization of t-SNE result of fake data clustering generated by the 
generator based on with size bias MNIST dataset from the perspective of 

generator and high accuracy classifier, respectively: (a) the result of 
generator view point of ClusterGAN t-SNE (top) and CLS-R GAN t-SNE 

(bottom) (b) the result of high accuracy classifier view point of 
ClusterGAN t-SNE(top) and CLS-R GAN t-SNE (bottom). 

 

 

 

Fig 7. Visualization of t-SNE result of fake data clustering generated by the 
generator based on with contents bias MNIST dataset from the perspective 

of generator and high accuracy classifier, respectively: (a) the result of 
generator view point of ClusterGAN t-SNE (top) and CLS-R GAN t-SNE 

(bottom) (b) the result of high accuracy classifier view point of 
ClusterGAN t-SNE(top) and CLS-R GAN t-SNE (bottom). 

 

 

 

Fig 8. Visualization of t-SNE result of fake data clustering generated by the 
generator based on without bias Fashion-MNIST dataset from the 

perspective of generator and high accuracy classifier, respectively: (a) the 
result of generator view point of ClusterGAN t-SNE (top) and CLS-R GAN 

t-SNE (bottom) (b) the result of high accuracy classifier view point of 
ClusterGAN t-SNE(top) and CLS-R GAN t-SNE (bottom). 



 

 

 

Fig 9. Visualization of t-SNE result of fake data clustering generated by the 
generator based on with size bias Fashion-MNIST dataset from the 

perspective of generator and high accuracy classifier, respectively: (a) the 
result of generator view point of ClusterGAN t-SNE (top) and CLS-R GAN 

t-SNE (bottom) (b) the result of high accuracy classifier view point of 
ClusterGAN t-SNE(top) and CLS-R GAN t-SNE (bottom). 

 

 

 

Fig 10. Visualization of t-SNE result of fake data clustering generated by 
the generator based on with contents bias Fashion-MNIST dataset from the 
perspective of generator and high accuracy classifier, respectively: (a) the 

result of generator view point of ClusterGAN t-SNE (top) and CLS-R GAN 
t-SNE (bottom) (b) the result of high accuracy classifier view point of 

ClusterGAN t-SNE(top) and CLS-R GAN t-SNE (bottom). 

 

As figures 5 to 10 show, the performance of CLS-R 
GAN is obviously superior at clustering, compared to t-SNE 
Visualization ClusterGAN and CLS-R GAN, which were 
trained on the basis of both MNIST and Fashion-MNIST 
dataset, regardless of either biased or unbiased. 
Furthermore, the clustering performance of CLS-R GAN 
was better even for biased dataset, as well as specifying 
cluster labels more accurately. 

VII. DISCUSSION 

Regarding data collection for medical deep-learning, it 
requires a lot of endeavor and expenses. Given that 
situation, GAN can be a cost-effective solution. CycleGAN 
[24], for instance, is used to convert ultrasonic images into 
CT images, while SRGAN [25] is used to convert low 
resolution MRI images in 3T, into high resolution MRI 
images in 7T. However, although the data capacity problem 
can be solved using GAN, there is no class label for the data 
generated with GAN. Therefore, in more recent studies, 
GAN variants such as ACGAN are used to solve these 
problems. As shown in Section V, ACGAN relatively 
cannot generate various images whereas CLS-R GAN 
relatively can generate more diverse augmented images with 

correct labeled classes. Fig.11 illustrates typical examples of 
fake data generated by the generator that completed self-
training in ultrasonic dataset. 

 

 

Fig. 11 Typical examples of fake data generated by the generator after self-
training completion. Ultrasonic dataset. 

 

Fig. 12 shows some highly deformed instances of 
qualified fake data in association with ultrasonic data which 
were chosen by independent classifier for training the 
generator. 

 

 

Fig. 12 Highly deformed examples of qualified fake data for ultrasonic 
dataset that are selected by the independent classifier for training the 

generator. 

 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we presented an approach to GAN-based 
generation of high quality and diversity of data by 
introducing a novel self-training framework to GAN, named 
CLS-R GAN. Extensive experiments, including ablation 
studies, were conducted to verify the effectiveness of CLS-
R GAN based on standard evaluation metrics. The results 
indicate that CLS-R GAN can provide improved quality and 
diversity in data augmentation, owing to the novel generator 
self-training approach based on self-improvement and 
clustering loops. Future research includes the applications of 
CLS-R GAN to a larger variety of datasets, including 
CIFAR10, STL10, ImageNet and medical datasets. In 
addition, a more thorough investigation on the optimal 
settings of system parameters and thresholds, including the 
effect of the proposed fake data selection criteria on data 
augmentation. 

REFERENCES 

[1] Mukherjee, Sudipto, et al. "Clustergan: Latent space clustering in 
generative adversarial networks." Proceedings of the AAAI 
conference on artificial intelligence. Vol. 33. No. 01. 2019. 

[2] Dam, Tanmoy, Sreenatha G. Anavatti, and Hussein A. Abbass. 
"Improving ClusterGAN Using Self-AugmentedInformation 
Maximization of Disentangling LatentSpaces." arXiv preprint 
arXiv:2107.12706 (2021). 



[3] Kim, Yunji, and Jung-Woo Ha. "Contrastive Fine-grained Class 
Clustering via Generative Adversarial Networks." arXiv preprint 
arXiv:2112.14971 (2021). 

[4] Liang, Jie, et al. "Sub-GAN: An unsupervised generative model via 
subspaces." Proceedings of the European Conference on Computer 
Vision (ECCV). 2018. 

[5] Andreeva, Olga, et al. "Catalysis clustering with gan by incorporating 
domain knowledge." Proceedings of the 26th ACM SIGKDD 
international conference on knowledge discovery & data mining. 
2020. 

[6] Odena, Augustus, Christopher Olah, and Jonathon Shlens. 
"Conditional image synthesis with auxiliary classifier gans." 
International conference on machine learning. PMLR, 2017. 

[7] Odena, Augustus. "Semi-supervised learning with generative 
adversarial networks." arXiv preprint arXiv:1606.01583 (2016). 

[8] Chen, Xi, et al. "Infogan: Interpretable representation learning by 
information maximizing generative adversarial nets." Advances in 
neural information processing systems 29 (2016). 

[9] Liu, Zhiyue, Jiahai Wang, and Zhiwei Liang. "Catgan: Category-
aware generative adversarial networks with hierarchical evolutionary 
learning for category text generation." Proceedings of the AAAI 
Conference on Artificial Intelligence. Vol. 34. No. 05. 2020. 

[10] Lin, Min. "Softmax gan." arXiv preprint arXiv:1704.06191 (2017). 

[11] Antoniou, Antreas, Amos Storkey, and Harrison Edwards. "Data 
augmentation generative adversarial networks." arXiv preprint 
arXiv:1711.04340 (2017). 

[12] Hou, Liang, et al. "Self-supervised gans with label augmentation." 
Advances in Neural Information Processing Systems 34 (2021): 
13019-13031. 

[13] Tran, Ngoc-Trung, et al. "On data augmentation for gan 
training." IEEE Transactions on Image Processing 30 (2021): 1882-
1897. 

[14] Zhang, Dan, and Anna Khoreva. "PA-GAN: Improving GAN training 
by progressive augmentation." (2018). 

[15] Zhao, Shengyu, et al. "Differentiable augmentation for data-efficient 
gan training." Advances in Neural Information Processing Systems 33 
(2020): 7559-7570. 

[16] Mirza, Mehdi, and Simon Osindero. "Conditional generative 
adversarial nets." arXiv preprint arXiv:1411.1784 (2014). 

[17] Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." 
Advances in neural information processing systems 30 (2017) 

[18] Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein 
generative adversarial networks." International conference on 
machine learning. PMLR, 2017. 

[19] Dam, Tanmoy, Sreenatha G. Anavatti, and Hussein A. Abbass. 
"Improving ClusterGAN Using Self-AugmentedInformation 
Maximization of Disentangling LatentSpaces." arXiv preprint 
arXiv:2107.12706 (2021). 

[20] Mishra, Deepak, Aravind Jayendran, and A. P. Prathosh. "Effect of 
the latent structure on clustering with gans." IEEE Signal Processing 
Letters 27 (2020): 900-904. 

[21] Tang, Shichang. "Lessons learned from the training of gans on 
artificial datasets." IEEE Access 8 (2020): 165044-165055. 

[22] Cao, Wenming, Zhiwen Yu, and Hau-San Wong. "GAN-based 
clustering solution generation and fusion of diffusion." Systems 
Science & Control Engineering 10.1 (2022): 24-42. 

[23] Goodfellow, Ian, et al. "Generative adversarial 
networks." Communications of the ACM 63.11 (2020): 139-144. 

[24] Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using 
cycle-consistent adversarial networks." Proceedings of the IEEE 
international conference on computer vision. 2017. 

[25] Ledig, Christian, et al. "Photo-realistic single image super-resolution 
using a generative adversarial network." Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2017. 

Jiang, Liming, et al. "Deceive D: Adaptive pseudo augmentation for gan 
training with limited data." Advances in Neural Information 
Processing Systems 34 (2021): 21655-21667. 

 

 


