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Abstract:
Liquid level control has been a continuous challenge in a considerable number of industrial processes,
especially when one has to simultaneously satisfy multiple control performance specifications. This
paper presents a comparative study between Particle Swarm Optimization and Gray Wolf Optimization
as tuning methodologies for a flatness-based controller, which has proved to be a useful tool to provide
efficient solutions to tracking control tasks. Numerical simulations of a nonlinear coupled tanks system
were performed to demonstrate the potential of using such bio-inspired algorithms as tuning methods
for nonlinear controllers.
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1. INTRODUCTION

Liquid level control is commonly found in a broad range of
industrial and commercial applications: oil and chemical pro-
cessing, waste management, water purification systems, and
nuclear power generation plants. Open-loop controllers and
proportional-integral-derivative (PID) controllers are widely
used in industrial liquid-level control applications with mod-
erate performance requirements (Åström et al., 2002; Yang,
2020). The main limitations to the use of these control strate-
gies are mainly due to (i) the presence of nonlinear dynamics
inherent in the liquid level systems and (ii) system parameter
variations (Joseph et al., 2022).

One way to address these issues is through the use of traditional
nonlinear control techniques such as sliding mode control (Ard-
jal et al., 2022), back-stepping control (Pan et al., 2005), model
predictive control (Scheurenberg et al., 2022), and fuzzy logic
controller (Mien, 2017). Alternatively, differential flatness the-
ory (Fliess et al., 1992; Rigatos, 2015) has received consid-
erable attention from some researchers in the last decade to
provide efficient solutions to the nonlinear liquid level control
problem (Michaud and Robert, 2010; Huang and Sira-Ramírez,
2015; Minh and Tan, 2021). However, the controller gain tuning
problem still presents significant theoretical challenges in order
to handle multiple control design requirements.
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To overcome the tuning problem, some bio-inspired algorithms
have emerged over time. Among them, two algorithms that have
shown good results are Gray Wolf Optimization (GWO) (Das
et al., 2015) and Particle Swarm Optimization (PSO) (Boual-
lègue et al., 2012). GWO adopts the hierarchical nature of gray
wolves and lists the best solution as alpha, followed by beta
and delta in descending order. Additionally, its hunting tech-
nique of tracking, encircling, and attacking are also modeled
mathematically to find the best-optimized solution (Hatta et al.,
2019). PSO is inspired by the information circulation and social
behavior observed in bird flocks and fish schools. Such inspi-
rations translate that the particles are characterized not only
by their position but also by their speed (Marini and Walczak,
2015). These two bio-inspired algorithms were already used in
different engineering fields: modeling bones numerically (Sen
et al., 2023), mineral exploration (Essa and Munschy, 2019),
improvement of energy efficiency (Djerioui et al., 2019), and
prediction of global solar radiation Tao et al. (2021).

In this paper, we propose to use both GWO and PSO as
tools to tune the gains of the flatness-based controller for a
nonlinear coupled tanks system, where the first is cylindrical
and the second is conical. Besides ensuring the convergence of
the system output to the desired setpoint, the main idea is to
implement these algorithms to determine the controller gains
that simultaneously satisfy multiple control design objectives,
such as mitigating overshoot while reducing the rise time for
the output of the system.



2. COUPLED TANKS SYSTEM
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Figure 1. Schematic diagram of a coupled tanks system.

Coupled tanks represent an important plant model to be studied
as it acts as the basic liquid level control problem occurring in
process industries and it is a well-known benchmark problem
for testing and analyzing the tracking performance of designed
controllers. The mathematical model of the nonlinear coupled
tanks system considered in this paper consists of three main
components in cascade (see Figure 1): a centrifugal pump, a
cylindrical tank, and a conical tank.

The cylindrical tank has a constant circular cross-sectional area
A1,in with a radius of R1, a maximum height H1,max and is fed
by the centrifugal pump at a flow rate Q1,in given according to
the following affinity law (Takacs, 2017):

Q1,in = Qnom
F

Fnom
(1)

with F being the power supply frequency of the pump motor
in Hz, and the pair (Qnom,Fnom) representing nominal flow
rate and frequency of the pump, respectively, whose values are
normally provided by the pump manufacturers.

From Bernoulli’s equation for steady, non-viscous, not com-
pressible flow, the flow rate exiting the tank Q1,out can be
expressed by:

Q1,out = ρA1,out
√

2gH1 (2)
where ρ , g and H1 represent the fluid density, the gravitational
constant, and the water level in tank 1, respectively. In addition,
the cross-sectional area of the pipe from tank 1 to tank 2 is given
by A1,out .

The mass balance principle of the liquid level in tank 1, which
is defined as the tank’s inflow and outflow difference, can be
written as the following first-order differential equation:

ρḢ1A1,in = Q1,in −Q1,out (3)

Substituting (1) and (2) in (3), we arrive at the differential
equation of the cylindrical tank:

Ḣ1 =C1F −C2
√

H1 (4)

where the constant parameters C1 and C2 are calculated as
follows:

C1 =
Qnom

FnomρA1,in
(5)

C2 =
A1,out

√
2g

A1,in
(6)

For the conical tank, its cross-sectional area A2,in is a function
that varies according to its water level H2, which is represented
mathematically as:

A2,in = π

(
H2R2,max

H2,max

)2

(7)

where R2,max and H2,max represent the maximum radius and
height of tank 2, respectively.

In a similar way to the centrifugal tank, the mass balance
principle of the liquid level in a conical tank can be written
as the following first-order differential equation:

ρḢ2A2,in = Q2,in −Q2,out (8)
with the input flow rate Q2,in = Q1,out and the flow rate exiting
the tank Q2,out given by:

Q2,out = ρA2,out
√

2gH2 (9)
where A2,out is the outlet area of tank 2.

Substituting (2), (7) and (9) in (8), we arrive at the differential
equation of the conical tank:

Ḣ2 =C3

√
H1

H2
2

−C4
1

H3/2
2

(10)

where the constant parameters C3 and C4 are calculated as
follows:

C3 =
A1,out

√
2g

π

(
H2,max

R2,max

)2

(11)

C4 =
A2,out

√
2g

π

(
H2,max

R2,max

)2

(12)

3. DESIGN OF FLATNESS-BASED CONTROLLER

Consider the input-affine nonlinear MIMO system in the state
space model of the form:

ẋ = f (x)+g(x)u = f (x)+
m

∑
i=1

gi(x)ui

yi = hi(x), i = 1, · · · ,m
(13)

where x ∈ Rn, ui, yi ∈ R, f and g1, · · · ,gm are smooth vector
fields, and hi are smooth functions.

Roughly speaking, a dynamic system is called differentially flat
if there exists a vector yz ∈ Rm as below:

yz = φz(x,u, u̇, · · · ,u(l)), (14)
with the state and input expressions parameterized as follows:

x = φx(yz, ẏz, · · · ,y(q)z ) (15)

u = φu(yz, ẏz, · · · ,y(q)z ,y(q+1)
z ) (16)

where φz, φx and φu are smooth vector functions. The vector yz
indicates the flat outputs of the system with l and q being finite
numbers. In the particular case that yz are exclusively functions
of the state vector, we say that the system is x-flat.

Defining now (x1, x2, x3, x4)
T = (H1, Ḣ1, H2, Ḣ2)

T , the nonlin-
ear coupled tanks system can be represented by the following
continuous state-space representation from (4) and (10):




ẋ1 = x2

ẋ2 =C1F −C2
√

x1

ẋ3 = x4

ẋ4 =C3
√

x1 −C4
1

x1.5
3

, y = x3 (17)

The aforementioned model is found to be differentially flat with
the flat output represented by the water level of the conical tank
(i.e., yz = x3). As a result, all system variables can be written as
differential functions of yz:

x1 =
yz(C4 + y1.5

z ẏz)
2

C2
3

(18)

x2 = ẋ1 (19)
x3 = yz (20)
x4 = ẏz (21)

F =
(ẋ1 +

√
x1C2)

C1
(22)

By manipulating (22), it follows from the differential flatness
property of (17) that the system can be transformed into a linear
system in the Brunovsky canonical form as follows:

ÿz = λ f (yz, ẏz)+λg(yz, ẏz)F = υ (23)
where λ f and λg are smooth functions, and υ represents the
new control variable.

For the previous description, a suitable feedback control law
can be defined as follows:

υ = ÿ∗z − k1
(
ẏz − ẏ∗z

)
− k0

(
yz − y∗z

)
(24)

where the desired water level y∗z and its time derivatives ẏ∗z
and ÿ∗z are assumed to be known, and the controller gains ki

are chosen such that p(s) = s2 + k1s+ k0s is a Routh-Hurwitz
polynomial.

Therefore, from (23), the control input that is actually exerted
on (17) is given by:

F =
[
υ −λ f (yz, ẏz)

]
λ
−1
g (yz, ẏz) (25)

4. BIO-INSPIRED ALGORITHMS

4.1 Gray Wolf Optimizer

As introduced in Mirjalili et al. (2014), Gray Wolf Optimizer
is a population-based meta-heuristic optimization algorithm
inspired by the social behavior of gray wolves and has been
successfully applied to a wide range of optimization prob-
lems (Faris et al., 2018; Negi et al., 2021).

The basic idea behind the GWO algorithm is to simulate the
hunting behavior of gray wolves in order to find the optimal
solution to an optimization problem. In a pack of gray wolves,
there are typically four types of wolves: alpha, beta, delta, and
omega. The alpha wolf is the pack’s leader and is responsible
for making most of the decisions. The beta wolf is the second-
in-command and helps the alpha make decisions. The delta
and omega wolves are lower-ranking members of the pack and
typically follow the alpha and beta.

The encircling behavior, in a mathematical representation, of
a prey during the hunt can be represented by the following
equations:

#»
X (t +1) =

# »
Xp −

#»
A ·

∣∣∣ #»
C · # »

Xp(t)−
#»
X (t)

∣∣∣ (26)

where t represents the current iteration,
#»
A and

#»
C are coefficient

vectors,
# »
Xp and

#»
X indicate the position vector of a prey and a

gray wolf, respectively. The vectors
#»
A and

#»
C are given by:

#»
A = 2 #»a · #»r1 − #»a (27)
#»
C = 2 #»r2 (28)

with the components of #»a decreasing linearly from 2 to 0
during the iterations. In addition, the vectors #»r1 and #»r2 are
randomly generated in the range of 0 to 1.

When the gray wolves are encircling their prey, it is assumed
that the alpha (the best candidate solution), beta, and delta have
superior knowledge of the potential location of prey. Thus, the
first three best solutions obtained are stored and the remaining
search agents, are required to update their positions based on
the position of the best search agent. The following equations
are proposed to represent this behavior.

# »
X1 =

# »
Xα − # »

A1 ·
∣∣∣ # »
C1 ·

# »
Xα − #»

X
∣∣∣ (29)

# »
X2 =

# »
Xβ − # »

A2 ·
∣∣∣ # »
C2 ·

# »
Xβ − #»

X
∣∣∣ (30)

# »
X3 =

# »
Xδ −

# »
A3 ·

∣∣∣ # »
C3 ·

# »
Xδ −

#»
X
∣∣∣ (31)

The fitness of each wolf is calculated based on its position
(which is the vector of variables that are being optimized). The
algorithm updates the wolves’ position accordingly with the
best values of the fitness function. The algorithm terminates
when a stopping criterion is met (e.g., a maximum number of
iterations is reached or the fitness of the best wolf is below a
certain threshold). Lastly, the best value found by the algorithm
is given by:

#»
X (t +1) =

# »
X1 +

# »
X2 +

# »
X3

3
(32)

4.2 Particle Swarm Optimization

Particle swarm optimization is a population-based stochastic
algorithm motivated by the intelligent collective behavior of
some animals and evolutionary theories, such as flocks of birds
and schools of fish, (Eberhart and James Kennedy, 2010; Wang
et al., 2018). These authors suggested the PSO algorithm as
a way to optimize continuous non-linear functions. Another
PSO method advantage is its computational efficiency and cost-
effectiveness, as it does not require complex operations (Eber-
hart and James Kennedy, 1999).

In the PSO approach, each candidate solution is called a "par-
ticle" and represents a point in a N-dimensional space with N
being the number of parameters to be optimized. The popula-
tion of S candidate solutions constitutes the swarm, which can
be represented by:

X = {x1,x2, · · · ,xS} (33)

Considering the N-dimensional position for the ith particle of
the swarm described by the vector xi:

xi = [xi1,xi2, · · · ,xiD] (34)

In searching for the problem’s optimal solution, the new posi-
tion for the ith particle is evaluated at each iteration based on
the following equation of motion (Marini and Walczak, 2015):

xi(t +1) = xi(t)+ vi(t +1) (35)
where t and t + 1 indicate two successive iterations used in
the algorithm and vi j represents the velocity vector for the ith
particle.



Figure 2. Particle Swarm Optimization algorithm flowchart,
exposed in Wang et al. (2018).

The velocity vectors govern the way particles move across the
search space and can be defined for the ith particle as:

vi(t +1) = w(t)vi(t)+ c1U1
(

pbest,i − xi(t)
)

+ c2U2 (gbest − xi(t)) (36)
where the pair (pbest,i,gbest) represents the coordinates of the
best solution obtained so far by the ith particle and the overall
best solution obtained by the swarm, respectively. The constant
parameters c1 and c2 are called cognitive and social coefficients,
respectively, and modulate the magnitude of the steps taken by
the particle in the direction of its personal best and global best.
The random factors U1 and U2 are two diagonal matrices of
uniformly distributed random numbers in range [0,1], so that
both the influence of c1 and c2 has a stochastic influence on
updating the ith particle’s velocity. The inertia factor w play the
role of balancing the global and local searches.

Similar to the GWO method, the PSO iterative process is
repeated until a stopping criterion is met, as can be seen in
Figure 2.

4.3 Fitness Function

The fitness function is a mathematical function used to eval-
uate the solution’s quality or the candidate solution inside the
problem search space. The process selects a candidate solution
as the input, producing a value as the output representing the
solution’s quality or fitness. The algorithm goal is to find the
solution with the lowest fitness value, being the best solution to
the problem.

The fitness function proposed in this paper is based on the
Integral of Time Squared Error (ITSE) index for preventing the
overshooting of H1 and H2 (Carrasco and Salgado, 2009):

J =
∫ t f

t0
|α1 (H1(τ)−H∗

1 (τ))+α2 (H2(τ)−H∗
2 (τ))|

2
τ dτ

(37)
where the weights α1 and α2 can be used to prioritize the
settling time of H2 over H1 or vice-versa.

Lastly, for both GWO and PSO, the aforementioned fitness
function is used to find the flatness-based controller gains k0
and k1. The results are compared and discussed in Section 5.

5. NUMERICAL SIMULATIONS

In this section, a numerical study was conducted for the nonlin-
ear coupled tanks system with parameters listed in Table 1 to
illustrate the effectiveness of GWO and PSO as tuning methods
for the flatness-based controller proposed in Section 3.

In the simulation tests, the control signals saturate at a fre-
quency of 10 Hz and 90 Hz. The initial liquid level in all
tanks is assumed to be 0.25 m. The desired output setpoint
h∗2 is designed to be 0.75 m, which results in h∗1 = 0.42 m
and F∗ = 20.30 Hz. The simulation time lasts for 25 s with
a sampling time of 0.01 s.

For both optimization methods, the following parameters were
chosen from the authors’ experience: the number of iterations
and the size of the population are equal to 100 and 30, respec-
tively; the weights α1 = 1.5 and α2 = 3.0 in order to prioritize
the settling time of H2 over H1; the search space was restricted
to [0.04,0.81] for k0 and [0.40,1.80] for k1. In addition, the
remaining PSO parameter values were defined as c1 and c2 are
both 2.05; w was gradually decreased from 0.9 towards 0.2.

The controller gains found that minimizing the fitness function
proposed in (37) using each tuning method can be seen in
Table 2. Simulation results for the closed-loop system are
illustrated in Figure 3.

As can be seen in the figure, the control scheme successfully
drives all variables to their desired setpoints in finite time.
We also observe that the level of the cylindrical tank did not
reach its maximum value, and the level of the conical tank did
not exhibit overshoot with a settling time of approximately 5
seconds for PSO and 7 seconds for GWO.

Lastly, the convergences of the best fitness evaluation for both
optimization algorithms are plotted in Figure 4 with respect to
their number of iterations used. After the 34th iteration, the
GWO achieved a minimum value for the fitness function and
remained stable. In the second one, the same behavior can be
observed for the PSO, but from the 65th iteration.

Table 1. Coupled tanks system parameters.

Parameter Value
Qnom 16.67 Kg/s
Fnom 60 Hz

ρ 998.23 Kg/m3

g 9.81 m/s2

H1,max 1.0 m
H2,max 1.0 m
R2,max 0.176 m
A1,in 0.0146 m2

A1,out 0.0020 m2

A2,out 0.0015 m2

Table 2. Controller gains tuned by the GWO and
PSO algorithms.

Controller gain GWO PSO
k0 0.5258 1.6488
k1 1.7882 1.4767
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Figure 3. Response of the system with gains tuned by the GWO
and PSO algorithm.
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Figure 4. GWO and PSO convergence of the best fitness evalu-
ation in all iterations.

6. CONCLUSION

In this paper, we have investigated the use of two bio-inspired
algorithms as tuning methods for a flatness-based controller.
It has been shown through simulation findings that both tech-
niques ensure that multiple control design objectives are met
simultaneously in order to solve a liquid level control problem
for a nonlinear coupled tanks system. Although both methods
achieved the control requirements, the GWO managed to find
a better result for the fitness function with fewer iterations than
the PSO. In contrast, the PSO converged to the H2 reference
slightly faster than GWO.

Further analyses will include the possibility of dealing with dif-
ferentially flat nonlinear systems with multiple-input multiple-
output whose flat output vector is not a measurable variable.
Future works will be concerned with extending our research to
be applied to cases where the system plant for the control design
is uncertain, but the simulation model is close to reality. For
example, the oil reservoir forecasting problem without model
calibration using a recent perspective based on the sequential
model aggregation technique.
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