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Abstract 

 

The case of certain pensions funds that are not auto financed, and are 

systematically maintained with an outside financing effort, is considered 

in this work. As a representation of the unrestricted reserves value 

process of this kind of funds, a time homogeneous diffusion process with 

finite expected time to ruin is proposed. Then it is admitted a financial 

tool that regenerates the diffusion at some level with positive value, every 

time the diffusion hits a barrier at the origin. So, the financing effort can 

be modeled as a renewal-reward process if the regeneration level is kept 

constant. The evaluation of the perpetual maintenance cost expected 

values and of the finite time maintenance cost are studied. Also, we 

present an application of this approach when the unrestricted reserves 

value process behaves as a generalized Brownian motion process. 

 

Keywords: pensions fund, diffusion process, first passage times, perpetuity, 

renewal equation 

 

 

1. Introduction 

 

Along this paper, we intend to deal with the protection cost present value 

expectation for a non-autonomous pensions fund. Two problems are 

considered in this context:  

− One concerning the case of the above-mentioned expectation when 

the protection effort is perpetual, 

− Other concerning the case of the protection effort for a finite time. 
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It is admitted that the unrestricted fund reserves behavior may be modeled 

as a time homogeneous diffusion process and use then a regeneration scheme 

of the diffusion to include the effect of an external financing effort. 

A similar work is [1], where is considered a Brownian motion process 

conditioned by a particular reflection scheme. Less constrained, but in 

different conditions, exact solutions were then obtained for both problems. 

The work presented in [2], on asset-liability management aspects, 

motivated the use of an application of the Brownian motion example in that 

domain. 

Part of this work was presented at the Fifth International Congress on 

Insurance: Mathematics & Economics, [3]. Other works on this subject are [4, 

5].  

 

 

2. Pensions Fund Reserves Behaviour Representation 

 

Be 𝑋(𝑡), 𝑡 ≥ 0 the reserves value process of a pensions fund given by an initial 

reserve amount 𝑎, 𝑎 > 0, added to the difference between the total amount of 

contributions received up to time t and the total amount of pensions paid up to 

time t. It is assumed that 𝑋(𝑡) is a time homogeneous diffusion process, with 

𝑋(0) = 𝑎, defined by drift and diffusion coefficients: 

 

lim
ℎ→0

1

ℎ
𝐸[𝑋(𝑡 + ℎ) − 𝑋(𝑡)|𝑋(𝑡) = 𝑥] = 𝜇(𝑥).

lim
ℎ→0

1

ℎ
𝐸 [(𝑋(𝑡 + ℎ) − 𝑋(𝑡))

2
|𝑋(𝑡) = 𝑥] = 𝜎2(𝑥).

 

 

Call 𝑆𝑎 the first passage time of 𝑋(𝑡) by 0, coming from a. The funds to 

be considered in this work are non-autonomous funds. So 

 

𝐸[𝑆𝑎] < ∞, for any 𝑎 > 0  (2.1) 

 

that is: funds where the pensions paid consume in finite expected time any 

initial positive reserve and the contributions received, so that other financing 

resources are needed in order that the fund survives. 

The condition (2.1) may be fulfilled for a specific diffusion process using 

criteria based on the drift and diffusion coefficients. Here the work presented 
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in [6], pg. 418-422, is followed in this context. Begin accepting that 

𝑃(𝑆𝑎 < ∞) = 1 if the diffusion scale function 

 

𝑞(𝑥) = ∫ 𝑒
− ∫

2𝜇(𝑦)
𝜎2(𝑦)

𝑑𝑦
𝑧

𝑥0 𝑑𝑧,
𝑥

𝑥0

 

 

where 𝑥0 is a diffusion state space fixed arbitrary point, fulfilling 𝑞(∞) = ∞. 

Then the condition (2.1) is equivalent to 𝑝(∞) < ∞, where 

 

𝑝(𝑥) = ∫
2

𝜎2(𝑧)
𝑒

∫
2𝜇(𝑦)
𝜎2(𝑦)

𝑑𝑦
𝑧

𝑥0 𝑑𝑧,
𝑥

𝑥0

 

 

is the diffusion speed function. 

It is admitted, whenever the exhaustion of the reserves happens, that an 

external source places instantaneously an amount 𝜃, 𝜃 > 0 of money in the 

fund, so that it may go on effective. 

The reserves value process conditioned by this financing scheme is 

represented by the modification �̌�(𝑡) of 𝑋(𝑡) that restarts at the level 𝜃 

whenever it hits 0. Note that since 𝑋(𝑡) was defined as a time homogeneous 

diffusion, �̌�(𝑡) is a regenerative process. Call 𝑇1, 𝑇2, 𝑇3, … the sequence of 

random variables where 𝑇𝑛 denotes the 𝑛𝑡ℎ �̌�(𝑡) passage time by 0. It is 

obvious that the sequence of time intervals between these hitting times 𝐷1 =

𝑇1, 𝐷2 = 𝑇2 − 𝑇1, 𝐷3 = 𝑇3 − 𝑇2, … is a sequence of independent random 

variables where 𝐷1 has the same probability distribution as 𝑆𝑎 and 𝐷2, 𝐷3, … 

the same probability distribution as 𝑆𝜃. 

 

 

3. First Passage Times Laplace Transforms 

 

Call 𝑓𝑎(𝑠) the probability density function of 𝑆𝑎(𝐷1). The corresponding 

probability distribution function is denoted by 𝐹𝑎(𝑠). The Laplace transform 

of 𝑆𝑎 is 

 

𝜑𝑎(𝜆) = 𝐸[𝑒−𝜆𝑆𝑎] = ∫ 𝑒−𝜆𝑠
∞

0

𝑓𝑎(𝑠)𝑑𝑠, 𝜆 > 0. 

Consequently, the density, distribution and transform of 𝑆𝜃 (𝐷2, 𝐷3, … ) 

will be denoted by 𝑓𝜃(𝑠), 𝐹𝜃(𝑠) and 𝜑𝜃(𝜆), respectively. 
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The transform 𝜑𝑎(𝜆) satisfies the second order differential equation 

 
1

2
𝜎2(𝑎)𝑢𝜆

´´(𝑎) + 𝜇(𝑎)𝑢𝜆
´ (𝑎) = 𝜆𝑢𝜆(a), 𝑢𝜆(𝑎) = 𝜑𝑎(𝜆), 𝑢𝜆(0)=1, 

𝑢𝜆(∞) = 0   (3.1) 

 

see [7], pg. 478, [8] pg. 243 and [9], pg. 89. 

 

 

4. Perpetual Maintenance Cost Present Value 

 

Consider the perpetual maintenance cost present value of the pensions fund 

that is given by the random variable 

 

𝑉(𝑟, 𝑎, 𝜃) = ∑ 𝜃𝑒−𝑟𝑇𝑛∞
𝑛=1 , r > 0, 

 

where r represents the appropriate discount rate. Note that 𝑉(𝑟, 𝑎, 𝜃) is a 

random perpetuity. What matters is its expected value which is easy to get 

using Laplace transforms. Since the 𝑇𝑛 Laplace transform is 𝐸[𝑒−𝜆𝑇𝑛] =

𝜑𝑎(𝜆)𝜑𝜃
𝑛−1(𝜆), 

 

𝑣𝑟(𝑎, 𝜃) = 𝐸[𝑉(𝑟, 𝑎, 𝜃)] =
𝜃𝜑𝑎(𝑟)

1−𝜑𝜃(𝑟)
  (4.1) 

 

It is relevant to note that 

 

lim
𝜃⟶0

𝑣𝑟(𝑎, 𝜃) =
𝑢𝑟(𝑎)

−𝑢𝑟
´ (0)

  (4.2) 

 

 

5. Finite Time Period Maintenance Cost Present Value 

 

Define the renewal process (𝑡) , generated by the extended sequence 𝑇0 =

0, 𝑇1, 𝑇2, …, by 𝑁(𝑡) = sup{𝑛: 𝑇𝑛 ≤ 𝑡}. The present value of the pensions fund 

maintenance cost up to time t is represented by the stochastic process 

 

𝑊(𝑡; 𝑟, 𝑎, 𝜃) = ∑ 𝜃𝑒−𝑟𝑇𝑛 , 𝑊(𝑡; 𝑟, 𝑎, 𝜃) = 0 𝑖𝑓 
𝑁(𝑡)
𝑛=1  𝑁(𝑡) = 0. 

The important now is the expected value function of the process 

evaluation: 𝑤𝑟(𝑡; 𝑎, 𝜃) = 𝐸[𝑊(𝑡; 𝑟, 𝑎, 𝜃)]. Begin noting that it may be 
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expressed as a numerical series. In fact, evaluating the expected value function 

conditioned by 𝑁(𝑡) = 𝑛, it is obtained 

 

𝐸[𝑊(𝑡; 𝑟, 𝑎, 𝜃)|𝑁(𝑡) = 𝑛] = 𝜃𝜑𝑎(𝑟)
1 − 𝜑𝜃

𝑛(𝑟)

1 − 𝜑𝜃(𝑟)
. 

 

Repeating the expectation: 

 

𝑤𝑟(𝑡; 𝑎, 𝜃) = 𝐸[𝐸[𝑊(𝑡; 𝑟, 𝑎, 𝜃)]|𝑁(𝑡)] = 𝜃𝜑𝑎(𝑟)
1−𝛾(𝑡,𝜑𝜃(𝑟))

1−𝜑𝜃(𝑟)
  (5.1) 

 

where 𝛾(𝑡, 𝜉) is the probability generating function of 𝑁(𝑡). 

Denote now the 𝑇𝑛 probability distribution function by 𝐺𝑛(𝑠) and assume 

𝐺0(𝑠) = 1, for 𝑠 ≥ 0. Recalling that 𝑃(𝑁(𝑡) = 𝑛) = 𝐺𝑛(𝑡) − 𝐺𝑛+1(𝑡), the 

above-mentioned probability generating function is 

 

𝛾(𝑡, 𝜉) = ∑ 𝜉𝑛∞
𝑛=0  𝑃(𝑁(𝑡) = 𝑛) = 1 − (1 − 𝜉) ∑ 𝜉𝑛−1∞

𝑛=1 𝐺𝑛(𝑡)  (5.2) 

 

Substituting (5.2) in (5.1), 𝑤𝑟(𝑡; 𝑎, 𝜃) is expressed in the form of the series 

 

𝑤𝑟(𝑡; 𝑎, 𝜃) = 𝜃𝜑𝑎(𝑟) ∑ 𝜑𝜃
𝑛−1(𝑟)∞

𝑛=1 𝐺𝑛(𝑡)  (5.3) 

 

Then, using (5.3), we will show that 𝑤𝑟(𝑡; 𝑎, 𝜃) satisfies a renewal type 

integral equation. 

Write for the 𝑤𝑟(𝑡; 𝑎, 𝜃) ordinary Laplace transform 𝜓(𝜆) =

∫ 𝑒−𝜆𝑠𝑤𝑟(𝑠; 𝑎, 𝜃)𝑑𝑠
∞

0
. Recalling that the probability distribution function 

𝐺𝑛(𝑠) of 𝑇𝑛 ordinary Laplace transform is given by 

∫ 𝑒−𝜆𝑠𝐺𝑛(𝑠)𝑑𝑠 =
∞

0
𝜑𝑎(𝜆)

𝜑𝜃
𝑛−1(𝜆)

𝜆
 , and performing the Laplace transforms in 

both sides of (5.3), it is achieved 

 

𝜓(𝜆) =
𝜃𝜑𝑎(𝑟)𝜑𝑎(𝜆)

𝜆(1 − 𝜑𝜃(𝑟)𝜑𝜃(𝜆))
 

 

or 

 

𝜓(𝜆) = 𝜃𝜑𝑎(𝑟)
𝜑𝑎(𝜆)

𝜆
+ 𝜓(𝜆)𝜑𝜃(𝑟)𝜑𝜃(𝜆) (5.4) 
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Inverting the transforms in both sides of (5.4) the following defective 

renewal equation 

 

𝑤𝑟(𝑡; 𝑎, 𝜃) =  𝜃𝜑𝑎(𝑟)𝐹𝑎(𝑡) + ∫ 𝑤𝑟(𝑡 − 𝑠; 𝑎, 𝜃)𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠
𝑡

0
  (5.5) 

 

results. 

Now an asymptotic approximation of 𝑤𝑟(𝑡; 𝑎, 𝜃) will be obtained through 

the key renewal theorem, following [7], pg. 376. 

If in (5.5) 𝑡 → ∞ 

 

𝑤𝑟(∞; 𝑎, 𝜃) =  𝜃𝜑𝑎(𝑟) + 𝑤𝑟(∞; 𝑎, 𝜃)𝜑𝜃(𝑟)  (5.6) 

 

or 

 

𝑤𝑟(∞; 𝑎, 𝜃) =
𝜃𝜑𝑎(𝑟)

1 − 𝜑𝜃(𝑟)
= 𝑣𝑟(𝑎, 𝜃). 

 

That is: the expression (4.1) for 𝑣𝑟(𝑎, 𝜃)is obtained again. Subtracting 

each side of (5.6) from each side of (5.5), and performing some elementary 

calculations the following, still defective, renewal equation 

 

𝐽(𝑡) = 𝑗(𝑡) + ∫ 𝐽(𝑡 − 𝑠)𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠
𝑡

0
 (5.7) 

 

where 𝐽(𝑡) = 𝑤𝑟(∞; 𝑎, 𝜃) − 𝑤𝑟(𝑡; 𝑎, 𝜃) and 𝑗(𝑡) =  𝜃𝜑𝑎(𝑟)(1 − 𝐹𝑎(𝑡)) +
𝜃𝜑𝑎(𝑟)𝜑𝜃(𝑟)

1−𝜑𝜃(𝑟)
(1 − 𝐹𝜃(𝑡)). 

Now, to obtain a common renewal equation from (5.7), it must be 

admitted the existence of a value 𝑘 > 0 such that 

 

∫ 𝑒𝑘𝑠𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠 =
∞

0

𝜑𝜃(𝑟)𝜑𝜃(−𝑘) = 1. 

 

This imposes that the transform 𝜑𝜃(𝜆) is defined in a domain different 

from the one initially considered, that is a domain that includes a convenient 

subset of the negative real numbers. 

Multiplying both sides of (5.7) by 𝑒𝑘𝑡 the common renewal equation 

desired is finally obtained:  
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𝑒𝑘𝑡𝐽(𝑡) = 𝑒𝑘𝑡𝑗(𝑡) + ∫ 𝑒𝑘(𝑡−𝑠)𝐽(𝑡 − 𝑠)𝑒𝑘𝑠
𝑡

0

𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠 

 

from which, through the application of the key renewal theorem, it results 

 

lim
𝑡→∞

𝑒𝑘𝑡𝐽(𝑡) =
1

𝑘0
∫ 𝑒𝑘𝑠𝑗(𝑠)

∞

0
𝑑𝑠   (5.8) 

 

with 𝑘0 = ∫ 𝑠𝑒𝑘𝑠∞

0
𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠 = 𝜑𝜃(𝑟)𝜑𝜃

´ (−𝑘), provided that 𝑒𝑘𝑡𝑗(𝑡) is 

directly Riemann integrable. The integral in (5.8) may expressed in terms of 

transforms as 

 

∫ 𝑒𝑘𝑠𝑗(𝑠)
∞

0

𝑑𝑠 =
𝜃𝜑𝑎(𝑟)𝜑𝑎(−𝑘)

𝑘
 . 

 

Resuming this section: 

 

− An asymptotic approximation, in the sense of (5.8) was obtained: 

 

𝑤𝑟(𝑡; 𝑎, 𝜃) ≈ 𝑣𝑟(𝑎, 𝜃) − 𝑐𝑟(𝑎, 𝜃)𝑒−𝑘𝑟(𝜃)𝑡  (5.9) 

 

where 𝑘𝑟(𝜃) is the positive value of k that satisfies 

 

𝜑𝜃(𝑟)𝜑𝜃(−𝑘) = 1 (5.10) 

 

and 

 

 𝑐𝑟(𝑎, 𝜃) =
𝜃𝜑𝑎(𝑟)𝜑𝑎(−𝑘𝑟(𝜃))

−𝑘𝑟(𝜃)𝜑𝜃(𝑟)𝜑𝜃
´ (−𝑘𝑟(𝜃))

 (5.11) 

 

 

6. Brownian Motion Example 

 

Consider that the diffusion process 𝑋(𝑡) , underlying the reserves value 

behavior of the pensions fund, is a generalized Brownian motion process, with 

drift 𝜇(𝑥) = 𝜇, 𝜇 < 0 and diffusion coefficient 𝜎2(𝑥) = 𝜎2, 𝜎 > 0. Observe 

that the setting satisfies the conditions that were assumed before to the former 

work, namely 𝜇 < 0 implies condition (2.1). Everything else remaining as 
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previously stated, it will be proceeded to present the consequences of this 

particularization. In general, it will be added a (∗) to the notation used before 

because it is intended to use these specific results later.  

To get the first passage time 𝑆𝑎 Laplace transform it must be solved, 

remember (3.1), 

 
1

2
𝜎2(𝑎)𝑢𝜆

∗´´(𝑎) + 𝜇(𝑎)𝑢𝜆
∗´(𝑎) = 𝜆𝑢𝜆

∗(𝑎), 𝑢𝜆
∗(𝑎) = 𝜑𝑎(𝜆), 𝑢𝜆

∗(0)=1, 

𝑢𝜆
∗(∞) = 0 .  

 

This is a homogeneous second order differential equation with constant 

coefficients, which general solution is  

 

𝑢𝜆
∗(𝑎) = 𝛽1𝑒𝛼1𝑎 + 𝛽2𝑒𝛼2𝑎, 𝑤𝑖𝑡ℎ 𝛼1, 𝛼2 =

−𝜇 ± √𝜇2 + 2𝜆𝜎2

𝜎2
. 

 

Condition 𝑢𝜆
∗(∞) = 0 implies 𝛽1 = 0 and 𝑢𝜆

∗(0)=1 implies 𝛽2=1 so that 

the solution is achieved: 

 

𝑢𝜆
∗(𝑎) = 𝑒−𝐾𝜆𝑎 (= 𝜑𝑎

∗(𝜆)), 𝐾𝜆 =
𝜇+√𝜇2+2𝜆𝜎2

𝜎2   (6.1) 

 

In this case, the perpetual maintenance cost present value of the pensions 

fund is given by, following (4.1) and using (6.1),  

 

𝑣𝑟
∗(𝑎, 𝜃) =

𝜃𝑒−𝐾𝑟𝑎

1−𝑒−𝐾𝑟𝜃   (6.2) 

 

Note that 𝑣𝑟
∗(𝑎, 𝜃) is a decreasing function of a and an increasing function 

of 𝜃. Proceeding as before, in particular 

 

lim
𝜃⟶0

𝑣𝑟
∗(𝑎, 𝜃) =

𝑒−𝐾𝑟𝑎

𝐾𝑟
 . (6.3) 

 

This expression has been obtained in [1], expression number [7], in a 

different context and using different methods but, obviously, with identical 

meaning. In [1] the authors worked then with a generalized Brownian motion, 

with no constraints in what concerns the drift coefficient, conditioned by a 

reflection scheme at the origin. 
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To reach an expression for the finite time maintenance cost present value, 

start by the computation of 𝑘𝑟
∗(𝜃), solving (5.10). This means finding a 

positive k satisfying 

𝑒−𝐾𝑟𝜃𝑒−𝐾−𝜆𝜃 = 1 or 𝐾𝑟 + 𝐾−𝜆 = 0. This identity is verified for the value 

of k  

 

𝑘𝑟
∗(𝜃) =

𝜇2−(−2𝜇−√𝜇2+2𝑟𝜎2)
2

2𝜎2 , if 𝜇 < −√
2𝑟𝜎2

3
  (6.4) 

 

Note that the solution is independent of 𝜃 in these circumstances. A 

simplified solution, independent of a and  , for 𝑐𝑟
∗(𝑎, 𝜃) was also obtained. 

Using (5.11) the result is  

 

𝑐𝑟
∗(𝑎, 𝜃) =

2𝜎2(−2𝜇−√𝜇2+2𝑟𝜎2)

𝜇2−(−2𝜇−√𝜇2+2𝑟𝜎2)
2  (6.5) 

 

Combining these results as in (5.9) it is observable that the asymptotic 

approximation for this particularization reduces to 𝑤𝑟
∗(𝑡; 𝑎, 𝜃) ≈ 𝑣𝑟

∗(𝑎, 𝜃) −

𝜋𝑟(𝑡), where the function 𝜋𝑟(𝑡) is, considering (6.4) and (6.5), 

 

𝜋𝑟(𝑡) =
2𝜎2(−2𝜇−√𝜇2+2𝑟𝜎2)

𝜇2−(−2𝜇−√𝜇2+2𝑟𝜎2)
2  𝑒−

𝜇2−(−2𝜇−√𝜇2+2𝑟𝜎2)

2

2𝜎2 𝑡, if 𝜇 < −√
2𝑟𝜎2

3
  (6.6) 

 

 

7. Representation of the Assets and Liability Behaviour 

 

It is proposed to consider now an application of the results obtained earlier to 

an asset-liability management scheme of a pensions fund. Assume that the 

assets value process of a pensions fund may be represented by the geometric 

Brownian motion process 

 

𝐴(𝑡) = 𝑏𝑒𝑎+(𝜌+𝜇)𝑡+𝜎𝐵(𝑡) with 𝜇 < 0 and 𝑎𝑏𝜌 + 𝜇𝜎 > 0, 

 

where 𝐵(𝑡) is a standard Brownian motion process. Suppose also that the 

liabilities value process of the fund performs as the deterministic 

process 𝐿(𝑡) = 𝑏𝑒𝜌𝑡. 
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Under these assumptions, consider now the stochastic process 𝑌(𝑡) 

obtained through the elementary transformation of 𝐴(𝑡)  

 

𝑌(𝑡) = 𝑙𝑛
𝐴(𝑡)

𝐿(𝑡)
= 𝑎 + 𝜇𝑡 + 𝜎𝐵(𝑡). 

 

This is a generalized Brownian motion process exactly as the one studied 

before, starting at a and with drift 𝜇 and diffusion coefficient 𝜎2. Note also 

that the firs passage time of the assets process 𝐴(𝑡) by the mobile barrier 𝑇𝑛 , 

the liabilities process, is the first passage time of 𝑌(𝑡) by 0, with finite 

expected time under the condition, stated before, 𝜇 < 0. 

Also consider the pensions fund management scheme that raises the assets 

value by some positive constant 𝜃𝑛, when the assets value falls equal to the 

liabilities process by the 𝑛𝑡ℎ time. This corresponds to consider the 

modification �̅�(𝑡) of the process 𝐴(𝑡) that restarts at times 𝑇𝑛 when 𝐴(𝑡) hits 

the barrier 𝐿(𝑡) by the 𝑛𝑡ℎ time at the level 𝐿(𝑇𝑛 ) + 𝜃𝑛. For purposes of later 

computations, it is a convenient choice the management policy where 

 

𝜃𝑛 = 𝐿(𝑇𝑛 )(𝑒𝜃 − 1), for some 𝜃 > 0    (7.1) 

 

The corresponding modification �̃�(𝑡) of 𝑌(𝑡) will behave as a generalized 

Brownian motion process that restarts at the level 𝑙𝑛
𝐿(𝑇𝑛)+𝜃𝑛

𝐿(𝑇𝑛 )
= 𝜃 when it hits 

0 (at times 𝑇𝑛 ). 

Proceeding this way, it is reproduced via �̃�(𝑡) the situation observed 

before when the Brownian motion example was treated. The Laplace 

transform in (6.1) is still valid. 

Similarly, to former proceedings, the results for the present case will be 

distinguished with the symbol (#). It is considered the pensions fund perpetual 

maintenance cost present value, because of the proposed asset-liability 

management scheme, given by the random variable: 

 

𝑉#(𝑟, 𝑎, 𝜃) = ∑ 𝜃𝑛𝑒−𝑟𝑇𝑛 

∞

𝑛=1

= ∑ 𝑏(𝑒𝜃 − 1)𝑒−(𝑟−𝜌)𝑇𝑛 , 𝑟 > 𝜌

∞

𝑛=1

 

where r represents the appropriate discount interest rate. To obtain the above 

expression it was only made use of the 𝐿(𝑡) definition and (7.1). It is possible 

to express the expected value of the above random variable with the help of 

(6.2) as 
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𝑣𝑟
#(𝑎, 𝜃) =

𝑏(𝑒𝜃−1)

𝜃
𝑣𝑟−𝜌

∗ (𝑎, 𝜃) =
𝑏(𝑒𝜃−1)𝑒−𝐾𝑟−𝜌𝑎

1−𝑒−𝐾𝑟−𝜌𝜃   (7.2) 

 

as 𝜃 → 0  

 

lim
𝜃→0 

𝑣𝑟
#(𝑎, 𝜃) =

𝑏𝑒−𝐾𝑟−𝜌𝑎

𝐾𝑟−𝜌
 (7.3) 

 

another expression explicit in [1]. 

In a similar way, the maintenance cost up to time t in the above-mentioned 

management scheme, is the stochastic process 

 

𝑊#(𝑡; 𝑟, 𝑎, 𝜃) = ∑ 𝑏(𝑒𝜃 − 1)𝑒−(𝑟−𝜌)𝑇𝑛 𝑁(𝑡)
𝑛=1 , 𝑊#(𝑡; 𝑟, 𝑎, 𝜃) =

0 if 𝑁(𝑡) = 0, 

 

with expected value function 

 

𝑤𝑟
#(𝑡; 𝑎, 𝜃) =

𝑏(𝑒𝜃−1)

𝜃
𝑤𝑟−𝜌

∗ (𝑡; 𝑎, 𝜃)  (7.4) 

 

The results of section 6 with r replaced by 𝑟 − 𝜌 may be combined as in 

(7.4) to obtain an asymptotic approximation. 

 

 

Concluding Remarks 

 

In the general diffusion setting, the main results are formulae (4.1) and (5.9). 

The whole work depends on the possibility of solving the equation (3.1) to 

obtain the Laplace transforms of the first passage times. Unfortunately, the 

solutions are known only for rare cases. An obvious case for which the 

solution of the equation is available is the one of the Brownian motion 

diffusion processes. The main results concerning this particularization are 

formulae (6.2) and (6.6). Certain transformations of the Brownian motion 

process that allowed us to make use of the available Laplace transform may 

be explored as it was done in section 7. Formulae (7.2) and (7.4) are this 

application most relevant results. 

Other approaches, on the use of stochastic processes in the study of the 

issue of pension funds sustainability, can be seen in [10, 11, and 12]. 
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