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Abstract

Goldbach’s conjecture is one of the most difficult unsolved problems in
mathematics. This states that every even natural number greater than
2 is the sum of two prime numbers. In 1973, Chen Jingrun proved that
every sufficiently large even number can be written as the sum of either
two primes, or a prime and a semiprime (the product of two primes). In
2015, Tomohiro Yamada, using the Chen’s theorem, showed that every
even number > exp exp 36 can be represented as the sum of a prime
and a product of at most two primes. In 2002, Ying Chun Cai proved
that every sufficiently large even integer N is equal to p + P2, where
P2 is an almost prime with at most two prime factors and p ≤ N0.95

is a prime number. In this note, we prove that for every even num-
ber N ≥ 32, if there is a prime p and a natural number m such
that n < p < N − 1, p + m = N , N ≫ σ(m) and p is
coprime with m, then m is necessarily a prime number when σ(m) is
the sum-of-divisors function of m, N = 2 · n and ≫ means “much
greater than”. Indeed, this is a trivial and short note very easy to
check and understand which is a breakthrough result at the same time.
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1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

where d | n means the integer d divides n. Define s(n) as σ(n)
n . In number

theory, the p-adic order of an integer n is the exponent of the highest power of
the prime number p that divides n. It is denoted νp(n). Equivalently, νp(n) is
the exponent to which p appears in the prime factorization of n. We can state
the sum-of-divisors function of n as

σ(n) =
∏
p|n

pνp(n)+1 − 1

p− 1

with the product extending over all prime numbers p which divide n. In
addition, the well-known Euler’s totient function φ(n) can be formulated as

φ(n) = n ·
∏
p|n

(
1− 1

p

)
.

Chen’s theorem states that every sufficiently large even number can be written
as the sum of either two primes, or a prime and a semiprime (the product of
two primes) [1]. Tomohiro Yamada using an explicit version of Chen’s theorem

showed that every even number greater than ee
36 ≈ 1.7 · 101872344071119343 is

the sum of a prime and a product of at most two primes [2]. A natural number
is called k-almost prime if it has k prime factors [3]. A natural number is prime
if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost
prime. Let N be a sufficiently large even integer. Ying Chun Cai proved that
the equation

N = p+ P2, p ≤ N0.95,

is solvable, where p denotes a prime and P2 denotes an almost prime with at
most two prime factors [3]. In mathematics, two integers a and b are coprime,
if the only positive integer that is a divisor of both of them is 1. Putting all
together yields the proof of the main theorem.

Theorem 1 For every even number N ≥ 32, if there is a prime p and a natural
number m such that n < p < N−1, p+m = N , N ≫ σ(m) and p is coprime with m,
then m is necessarily a prime number when N = 2 · n and ≫ means “much greater
than”.
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2 Proof of Theorem 1

Proof Suppose that there is an even number N ≥ 32 which is not a sum of two
distinct prime numbers. We consider all the pairs of positive integers (n− k, n+ k)
where n = N

2 , k < n is a natural number, n+ k and n− k are coprime integers and
n+ k is prime. By definition of the functions σ(x) and φ(x), we know that

2 ·N = σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

when n− k is also prime. We notice that

2 ·N < σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

when n − k is not a prime. Certainly, we see that (n − k) + (n + k) = N and thus,
the inequality

2 · ((n− k) + (n+ k)) + φ((n− k) · (n+ k)) < σ((n− k) · (n+ k))

holds when n− k is not a prime. That is equivalent to

2 · ((n− k) + (n+ k)) + φ(n− k) · φ(n+ k) < σ(n− k) · σ(n+ k)

since the functions σ(x) and φ(x) are multiplicative. Let’s divide both sides by (n−
k) · (n+ k) to obtain that

2 ·
(
(n− k) + (n+ k)

(n− k) · (n+ k)

)
+

φ(n− k)

n− k
· φ(n+ k)

n+ k
< s(n− k) · s(n+ k).

We know that
s(n− k) · s(n+ k) > 1

since s(m) > 1 for every natural number m > 1 [4]. Moreover, we could see that

2 ·
(
(n− k) + (n+ k)

(n− k) · (n+ k)

)
=

2

n+ k
+

2

n− k

and therefore,

1 >
2

n+ k
+

2

n− k
+

φ(n− k)

n− k
· φ(n+ k)

n+ k
.

It is enough to see that

1 >
2

23
+

2

9
+

2

3
≥ 2

n+ k
+

2

n− k
+

φ(n− k)

n− k
· φ(n+ k)

n+ k
when n+k is prime and n−k is composite for N ≥ 32. Under our assumption, every
of these pairs of positive integers (n− k, n+ k) implies that

2 ·N < σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

holds when n = N
2 , k < n is a natural number, n+ k and n− k are coprime integers

and n+k is prime. Now suppose that N ≫ σ(n−k), where ≫ means “much greater
than”. Besides, we deduce that

2 = σ(n+ k)− φ(n+ k)

when n+ k is prime. Hence, we have

(σ(n+ k)− φ(n+ k)) ·N < σ((n− k) · (n+ k))− φ((n− k) · (n+ k))

that is equivalent to

(σ(n+ k)− φ(n+ k)) <
σ(n− k)

N
· σ(n+ k)− φ(n− k)

N
· φ(n+ k)

and

σ(n+ k) ·
(

1

σ(n− k)
− 1

N

)
< φ(n+ k) ·

(
1

σ(n− k)
− φ(n− k)

N · σ(n− k)

)
.

However, we can assure that the previous inequality does not hold when N ≫ σ(n−
k). For that reason, we obtain the desired contradiction. By reductio ad absurdum,
the natural number n− k is necessarily prime. □
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