F EasyChair Preprint
 № 9419

Deep on Goldbach's Conjecture

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Deep on Goldbach's conjecture

Frank Vega ${ }^{1 *}$
${ }^{1 *}$ Software Department, CopSonic, 1471 Route de
Saint-Nauphary, Montauban, 82000, Tarn-et-Garonne, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

Goldbach's conjecture is one of the most difficult unsolved problems in mathematics. This states that every even natural number greater than 2 is the sum of two prime numbers. In 1973, Chen Jingrun proved that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes). In 2015, Tomohiro Yamada, using the Chen's theorem, showed that every even number $>\exp \exp 36$ can be represented as the sum of a prime and a product of at most two primes. In 2002, Ying Chun Cai proved that every sufficiently large even integer \boldsymbol{N} is equal to $\boldsymbol{p}+\boldsymbol{P}_{\mathbf{2}}$, where $\boldsymbol{P}_{\mathbf{2}}$ is an almost prime with at most two prime factors and $\boldsymbol{p} \leq \boldsymbol{N}^{\mathbf{0 . 9 5}}$ is a prime number. In this note, we prove that for every even number $\boldsymbol{N} \geq 32$, if there is a prime \boldsymbol{p} and a natural number \boldsymbol{m} such that $n<\boldsymbol{p}<\boldsymbol{N}-\mathbf{1}, \boldsymbol{p}+\boldsymbol{m}=\boldsymbol{N}, \boldsymbol{N}>\boldsymbol{\sigma}(\boldsymbol{m})$ and \boldsymbol{p} is coprime with m, then \boldsymbol{m} is necessarily a prime number when $\sigma(\boldsymbol{m})$ is the sum-of-divisors function of $\boldsymbol{m}, \boldsymbol{N}=\mathbf{2} \cdot \boldsymbol{n}$ and \gg means "much greater than". Indeed, this is a trivial and short note very easy to check and understand which is a breakthrough result at the same time.

Keywords: Goldbach's conjecture, Prime numbers, Sum-of-divisors function, Euler's totient function

MSC Classification: 11A41, 11A25

> Goldbach's conjecture

1 Introduction

As usual $\sigma(n)$ is the sum-of-divisors function of n

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides n. Define $s(n)$ as $\frac{\sigma(n)}{n}$. In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted $\nu_{p}(n)$. Equivalently, $\nu_{p}(n)$ is the exponent to which p appears in the prime factorization of n. We can state the sum-of-divisors function of n as

$$
\sigma(n)=\prod_{p \mid n} \frac{p^{\nu_{p}(n)+1}-1}{p-1}
$$

with the product extending over all prime numbers p which divide n. In addition, the well-known Euler's totient function $\varphi(n)$ can be formulated as

$$
\varphi(n)=n \cdot \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Chen's theorem states that every sufficiently large even number can be written as the sum of either two primes, or a prime and a semiprime (the product of two primes) [1]. Tomohiro Yamada using an explicit version of Chen's theorem showed that every even number greater than $e^{e^{36}} \approx 1.7 \cdot 10^{1872344071119343}$ is the sum of a prime and a product of at most two primes [2]. A natural number is called k-almost prime if it has k prime factors [3]. A natural number is prime if and only if it is 1 -almost prime, and semiprime if and only if it is 2-almost prime. Let N be a sufficiently large even integer. Ying Chun Cai proved that the equation

$$
N=p+P_{2}, \quad p \leq N^{0.95}
$$

is solvable, where p denotes a prime and P_{2} denotes an almost prime with at most two prime factors [3]. In mathematics, two integers a and b are coprime, if the only positive integer that is a divisor of both of them is 1 . Putting all together yields the proof of the main theorem.

Theorem 1 For every even number $N \geq 32$, if there is a prime p and a natural number m such that $n<p<N-1, p+m=N, N \gg \sigma(m)$ and p is coprime with m, then m is necessarily a prime number when $N=2 \cdot n$ and \gg means " $m u c h$ greater than".

Goldbach's conjecture

2 Proof of Theorem 1

Proof Suppose that there is an even number $N \geq 32$ which is not a sum of two distinct prime numbers. We consider all the pairs of positive integers ($n-k, n+k$) where $n=\frac{N}{2}, k<n$ is a natural number, $n+k$ and $n-k$ are coprime integers and $n+k$ is prime. By definition of the functions $\sigma(x)$ and $\varphi(x)$, we know that

$$
2 \cdot N=\sigma((n-k) \cdot(n+k))-\varphi((n-k) \cdot(n+k))
$$

when $n-k$ is also prime. We notice that

$$
2 \cdot N<\sigma((n-k) \cdot(n+k))-\varphi((n-k) \cdot(n+k))
$$

when $n-k$ is not a prime. Certainly, we see that $(n-k)+(n+k)=N$ and thus, the inequality

$$
2 \cdot((n-k)+(n+k))+\varphi((n-k) \cdot(n+k))<\sigma((n-k) \cdot(n+k))
$$

holds when $n-k$ is not a prime. That is equivalent to

$$
2 \cdot((n-k)+(n+k))+\varphi(n-k) \cdot \varphi(n+k)<\sigma(n-k) \cdot \sigma(n+k)
$$

since the functions $\sigma(x)$ and $\varphi(x)$ are multiplicative. Let's divide both sides by ($n-$ $k) \cdot(n+k)$ to obtain that

$$
2 \cdot\left(\frac{(n-k)+(n+k)}{(n-k) \cdot(n+k)}\right)+\frac{\varphi(n-k)}{n-k} \cdot \frac{\varphi(n+k)}{n+k}<s(n-k) \cdot s(n+k) .
$$

We know that

$$
s(n-k) \cdot s(n+k)>1
$$

since $s(m)>1$ for every natural number $m>1[4]$. Moreover, we could see that

$$
2 \cdot\left(\frac{(n-k)+(n+k)}{(n-k) \cdot(n+k)}\right)=\frac{2}{n+k}+\frac{2}{n-k}
$$

and therefore,

$$
1>\frac{2}{n+k}+\frac{2}{n-k}+\frac{\varphi(n-k)}{n-k} \cdot \frac{\varphi(n+k)}{n+k} .
$$

It is enough to see that

$$
1>\frac{2}{23}+\frac{2}{9}+\frac{2}{3} \geq \frac{2}{n+k}+\frac{2}{n-k}+\frac{\varphi(n-k)}{n-k} \cdot \frac{\varphi(n+k)}{n+k}
$$

when $n+k$ is prime and $n-k$ is composite for $N \geq 32$. Under our assumption, every of these pairs of positive integers $(n-k, n+k)$ implies that

$$
2 \cdot N<\sigma((n-k) \cdot(n+k))-\varphi((n-k) \cdot(n+k))
$$

holds when $n=\frac{N}{2}, k<n$ is a natural number, $n+k$ and $n-k$ are coprime integers and $n+k$ is prime. Now suppose that $N \gg \sigma(n-k)$, where \gg means "much greater than". Besides, we deduce that

$$
2=\sigma(n+k)-\varphi(n+k)
$$

when $n+k$ is prime. Hence, we have

$$
(\sigma(n+k)-\varphi(n+k)) \cdot N<\sigma((n-k) \cdot(n+k))-\varphi((n-k) \cdot(n+k))
$$

that is equivalent to

$$
(\sigma(n+k)-\varphi(n+k))<\frac{\sigma(n-k)}{N} \cdot \sigma(n+k)-\frac{\varphi(n-k)}{N} \cdot \varphi(n+k)
$$

and

$$
\sigma(n+k) \cdot\left(\frac{1}{\sigma(n-k)}-\frac{1}{N}\right)<\varphi(n+k) \cdot\left(\frac{1}{\sigma(n-k)}-\frac{\varphi(n-k)}{N \cdot \sigma(n-k)}\right) .
$$

However, we can assure that the previous inequality does not hold when $N \gg \sigma(n-$ $k)$. For that reason, we obtain the desired contradiction. By reductio ad absurdum, the natural number $n-k$ is necessarily prime.

Goldbach's conjecture

References

[1] C. Jing-Run, On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16, 157-176
[2] T. Yamada, Explicit Chen's theorem. arXiv preprint arXiv:1511.03409v1 (2015)
[3] Y.C. Cai, Chen's Theorem with Small Primes. Acta Mathematica Sinica $18(3)$ (2002). https://doi.org/10.1007/s101140200168
[4] R. Vojak, On numbers satisfying Robin's inequality, properties of the next counterexample and improved specific bounds. arXiv preprint arXiv:2005.09307v1 (2020)

