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Abstract—When the defect detection model of transmission
line insulator strings is deployed on edge devices such as drones,
it is essential to condense the model as much as possible while
increasing computation speed while maintaining accuracy. This
paper proposes a new lightweight target detection algorithm
based on YOLOv5, improves the C3 network structure by intro-
ducing multi-scale feature information interaction and reducing
redundant channel information, and generates two modules that
can consider both speed and accuracy, namely FasterC3 and
Res2C3. Experiments have shown that combining these two
modules can cut the number of model parameters and operations
per second by 12%. Furthermore, the computation performance
is faster than specific standard lightweight networks with fewer
layers.

Index Terms—Object detection, Lightweight, YOLOv5, Power
Systems

I. INTRODUCTION

Insulator strings are essential in transmission lines because
they offer isolation and mechanical support for transmission
wires. Transmission lines often operate in a natural setting
and will unavoidably be impacted by hostile surroundings,
resulting in partial loss of insulator strings, affecting regular
transmission line performance, and, in extreme situations,
paralyzing the whole power system. The power grid sys-
tem’s power line inspection job is mostly manual, yet this
is a time-consuming, labor-intensive, and dangerous inspec-
tion approach. Because of its low cost, convenience and
flexibility, high efficiency, and high safety factor, the UAV
inspection system integrating artificial intelligence such as
target detection, semantic segmentation, and other algorithms
has become the standard of today’s power inspection with
the proposal and development of an intelligent grid. The
study on insulator string defect detection is underway as
a crucial component of the UAV power inspection system.
The invention of a deep learning-based intelligent, efficient,

and real-time insulator string defect detection algorithm has
significant practical and research implications for smart grid
transmission line inspection systems. The insulator string and
its defect detection work may be classed as small target real-
time detection due to the difficulty and uniqueness of its
application circumstances. Deep learning approaches provide
several great solutions for target identification challenges in
computer vision. Convolutional neural network-based target
identification techniques have long been a research focus.
According to the recognition stage, target detection algorithms
are divided into two categories.

One is a two-stage deep learning object detection system
based on candidate frames represented by R-CNN [1], Fast
R-CNN [2], and Faster R-CNN [3] deep convolutional neural
networks. On aerial insulator photos, Liu et al. [4] employed
the Faster R-CN network to obtain a detection accuracy of
94% and a detection speed of 10 frames per second. Liang
et al. [5] modified the Faster R-CNN technique. They utilized
ResNet-101 as the backbone network to build a multi-category
defect detection model for insulator strings, voltage-equalizing
rings, and shock-proof hammers. The method’s average accu-
racy (mAP) is 91.1%, 11% greater than the Faster R-CNN
algorithm with VGG-16 as the backbone network. Yang et
al. [6] used Mask R-CNN to detect self-explosion defects
and locate insulators. Gao et al. [7-8] integrated the target
detection method with the semantic segmentation approach to
construct a cascade detection model in order to address the tiny
target detection nature of the insulator string defect detection
problem. To begin, a faster R-CNN was utilized to precisely
find the insulator string, and then the semantic segmentation
technique was employed to discover the defect site of the
identified insulator string. Although the two-stage detection
network has intrinsic accuracy benefits, its network structure
features generally result in a large number of parameters



and sluggish detection speed, making real-time detection jobs
intolerable.

The other is a one-stage detection network based on the
YOLO (You Only Look Once) [9-12] and SSD [13] (Single
Shot Multibox Detector) series. The main difference from the
two-stage network structure is that it eliminates the candidate
region creation step, conducts classification and bounding
box regression right after the feature extraction network,
and outputs the projected target’s position and category. To
detect insulator pictures, Han et al. [14] employed ResNet50
as the backbone network of YOLOv3. When compared to
the original YOLOv3 method, the upgraded network model
used 14.5% less RAM. Leamsaard et al. [15] introduced the
attention mechanism into the Darknet-53 feature extraction
network and proposed the YOLO-AFB structure for insulator
string detection based on the attention mechanism and fea-
ture balance, which solved the problem of low accuracy of
multi-target detection in complex backgrounds. Li et al. [16]
improved the YOLOv5 model using USRNet to handle the
problem of low detection accuracy of complex background
objects and minor faults in transmission line inspection pic-
tures. The two-stage and single-stage approaches described
above are primarily concerned with improving the detection
accuracy of the insulator string and its faulty portions in
the insulator detection task. The most popular strategy is to
increase the number of neural network layers. Although the
accuracy of some data sets has increased, it appears that a
practical crucial aspect is being overlooked, namely, when
deploying the insulator string defect detection technique on the
UAV, its virtually rigid model size, and computing complexity
constraints. Even though the computational complexity of the
single-stage technique is substantially lower than that of the
two-stage algorithm, it does not fulfill the requirements for
deployment on UAVs and other terminal devices with limited
processing power and storage resources. As a result, research
into the accuracy and speed of detecting insulator strings and
their defective portions, as well as the balance of model weight
reduction, is a challenging challenge that must be solved as
soon as possible.

YOLOv5 is an outstanding and mature approach for com-
puter vision target identification jobs that is simple to imple-
ment and go online. It also has a corresponding version that
can help with tasks with lightweight requirements, although
its lightweight version n has only 1.9 M parameters, Floating-
point Of Operations or FLOPs is only 4.5G, but its detection
accuracy is also greatly reduced. According to the most recent
research, the key cause for the model’s low Giga Floating-
point Operations Per Second or GFLOPS and high FLOPs
is frequent memory access. Chen et al. [17] presented a local
convolution (PConv) method to overcome this problem, which
may decrease redundant computations and memory access
times, make better use of the device’s CPU capacity, and is
also particularly successful for spatial feature extraction. The
purpose of this study is to develop the C3 network structure
based on the YOLOv5 lightweight model, decrease model
parameters, FLOPs, and further increase detection accuracy

to fulfill the high precision and lightweight requirements of
the insulator string and its defect detection assignment. In
summary, the following are the paper’s contributions:
• We propose a Res2C3 network structure that may be

utilized to replace the C3 network structure and pro-
vide multi-scale information interaction properties to the
model.

• We propose a FasterC3 network structure to replace the
C3 network structure and significantly reduce the number
of parameters and GFLOPs in the YOLOv5 model.

• We utilize the picture data from a public competition and
a public Chinese Power Line Insulator Dataset(CPLID)
dataset as the initial dataset. Applying data augmentation
strategies, we subsequently expand the dataset to include
11111 photos containing insulator strings. On this dataset,
the efficacy and efficiency of our suggested two structures
and their combination procedures are validated.

II. OVERVIEW OF YOLOV5 ALGORITHM

So far, the latest algorithm of the YOLO series has been
developed to the YOLOv8 [18] version, but YOLOv5 [19]
has become one of the most popular and efficient solutions
for target detection tasks with its excellent ecological envi-
ronment, standardized operating procedures, and mature and
rich application experience. YOLOv5’s general structure may
be separated into four modules: input, backbone network,
neck network, and detecting head. The input module receives
images of any size and calculates the anchor frame, among
other things, while the detection head predicts the detection
frame and category. The backbone and neck networks are
detailed below.

The backbone network, which is primarily responsible
for extracting information from incoming pictures, is a key
component of object detection. In addition to the standard
convolution block, the current version of YOLOv5’s backbone
network structure includes a C3 module including residuals
to improve the model’s stability and accuracy by increasing
the variety of features and information interaction. It provides
benefits in tiny object detection as well as dense object
detection. Fig.1 depicts its network structure diagram.

Fig. 1. Backbone structure of YOLOv5.



The neck network serves in the construction of a feature
pyramid, the fusion of features, and the enhancement of
feature extraction. The current version of YOLOv5 employs
the PANet network, which is composed of four components:
FPN, bottom-up path augmentation, adaptive feature pooling,
and fully-connected fusion. FPN primarily improves the effect
of target detection by fusing high-level and low-level features,
particularly the detection effect of small-sized targets; Bottom-
up path augmentation can shorten the information propagation
path, allowing for more precise positioning of low-level fea-
tures; Adaptive feature pooling can make each proposal more
effective; Fully-connected fusion allows for the addition of
information sources to mask prediction. Fig.2 depicts the neck
network’s structural diagram.

Fig. 2. Neck network structure of YOLOv5.

III. PROPOSED METHOD

The method in this paper is to improve on the foundation
of YOLOv5, making it more appropriate for applications like
tiny target image identification and drone and another terminal
equipment deployment.

A. FasterC3 Module

To address the original model’s high computational cost and
vast number of parameters. We created the FasterC3 network
topology to drastically reduce the amount of parameters and
floating-point operations GFLOPs. The FasterC3 structure
was inspired by FasterNet’s FasterNet Block module. In the
FasterNet essay, the author completed an in-depth investigation
of the popular operator DWConv in order to produce a quicker
network and demonstrated that the inefficient FLOPs are
attributable to the operator’s frequent memory access. The
authors point out that DWConv’s FLOPs are h × w × k2

× c, whereas standard convolution’s FLOPs are h × w ×

k2 × c2. Although DWConv [20] is successful in reducing
FLOPs, it is frequently followed by PWConv, which cannot
be used in place of conventional convolution because it will
result in significant accuracy loss. Even in the inverse residual
block, the width of DWConv is increased by a factor of 6 to
compensate for the loss of accuracy; Nevertheless, this results
in greater memory accesses, which results in non-negligible
latency and slows down calculation performance. Memory
accesses can now reach:

h× w × 2c′ + k2 × c′ ≈ h× w × 2c′ (1)

And the number of normal convolution memory accesses is as
follows:

h× w × 2c+ k2 × c2 ≈ h× w × 2c (2)

It should be noted that h × w × 2c′ is utilized for memory
access I/O operations and is tough to optimize further. Further-
more, the author pointed out that the various channels of the
feature map have exceptionally high redundancy, hence it is
recommended to convolve certain channels while leaving the
others untouched. The first or final cp channels are generated
as a representation of the complete feature map for memory
access of sequential or regular convolutions. The FLOPs of
PConv are now available.

h× w × k2 × c2p (3)

Setting cp to 1/4 of c results in 1/16 of conventional convolu-
tion, and memory access is limited to:

h× w × 2cp + k2 × c2p ≈ h× w × 2cp (4)

It is 1/4 of the regular convolution. The author adds the
PWConv to PConv to completely and effectively utilize the
information from all channels. On the input feature map, the
effective receptive field resembles a T-shaped convolution, and
this structure prioritizes the center position more than the
standard convolution with uniform processing.

PConv and FasterNet Block perform efficiently in terms of
computation speed. Based on this, we apply the upgraded
Faster Block to replace the bottleneck structure of the C3
module in the YOLOv5 model’s neck network and realize
the number of floating-point operations while guaranteeing
accuracy and stability, as well as a significant decrease in
the number of parameters. Fig.3 depicts FasterC3’s particular
network topology.

B. Res2C3 Module

For most vision tasks, multi-scale feature representation
is essential. To represent multi-scale characteristics, most
known approaches use a hierarchical approach. The author
proposes a new method of representing multi-scale features
in Res2Net [21], namely the Res2Net CNN building block,
which builds hierarchical class residuals in a single residual
block connection and increases the receptive field range of
each network layer. In contrast to [22][23][24], the author
enhances multi-scale capabilities by employing features with
varying resolutions. In Res2Net, multi-scale refers to more



Fig. 3. The network structure of FasterC3 and PConv. The FasterC3 module
consists of a 3×3 PConv and two 1×1 PWConv, using batch normalization
(BN) and SiLU activation functions in the middle.

fine-grained numerous accessible receptive fields. Specifically,
Res2Net divides the input features into several groups, and a
group of filters first extracts features from a group of input
feature maps, and then sends the output feature maps of the
previous group, along with another group of input feature
maps, to the next group filter, and so on until all input feature
maps have been processed. Finally, the feature maps of all
groups are concatenated and sent into another 1×1 filter to
completely fuse the data. When passing through the 3×3 filter
along all feasible path from the input feature map to the
output feature map, the equivalent receptive field increases,
and multiple similar feature scales are created owing to the
combination effect.

We replaced the bottleneck structure with C3 and combined
the upgraded Res2Net Block into the C3 structure for de-
veloping the Res2C3 module because multi-scale information
interaction is favorable to the target identification job. Fig4
depicts a schematic representation of its construction. After a
standard convolution, the C3 structure enters the Bottleneck
(Res2Net Block) structure, and the feature map is separated
into four sections using 1×1 convolution. The first part of X1

is not processed and is directly passed to Y1; the second part
of X2 is divided into two branches after 3×3 convolution; one
part continues to propagate forward to Y2, and the other branch
is passed to X3 so that the third branch obtains the first The
second branch’s information; the third branch’s information;
the fourth branch’s information, and so on. Each branch has
an n/s channel number. Assuming Xi, where i ∈ {1, 2,..., s}, s
= 4 in the Fig.4, and Ki() means 3×3 convolution, the output
Yi is:

Yi =

 Xi i = 1
Ki(Xi) i = 2

Ki(Xi + Yi−1) 2 ≤ i < s
(5)

The split applies a multi-scale strategy that allows for the

Fig. 4. The network structure of Res2C3 and Res2Net Block.

extraction of global and local information. Concatenate all
branches and transmit them through 1×1 convolution to better
integrate information at various sizes. Convolutions can pro-
cess features more effectively by dividing and concatenating
processes. To decrease the number of parameters, the convo-
lution of the first division is eliminated, which could also lead
to feature reuse. Using s as the scale size control parameter,
higher s will provide a richer receptive field size to extract
information for learning.

C. Combination Module

Because aerial images frequently contain multiple targets
of insulator strings of varying distances, and there are multi-
scale information interactions between the defective parts of
insulator strings and the entire insulator string, the insulator
strings built on the UAV inspection system Detection tasks
exploit finer-grained multi-scale feature interactions to be very
effective. In the YOLOv5(n) backbone network, we replace
the four C3 modules with four Res2C3 modules to extract
and fuse feature maps with multi-scale information; in the
neck network, we use four FasterC3 modules to replace four
C3 modules, so that the detection task of insulators and their
defect parts can achieve a balance of speed, parameter quantity,
GFLOPs, and precision.

IV. EXPERIMENTS

A. Data Preprocessing

Part of the data comes from Zhang et al. [25] CPLID.
The dataset comprises regular insulators acquired by drones,
with a total of 600 images. It also contains defective insu-
lators, with a total of 248 images, which have been edited
by applying data such as segmentation, affine transformation,
and splicing. The approach created the image of defective
insulator strings. The remaining data comes from the data
set supplied by the insulator-detecting competition’s organizer.
This data collection includes glass and ceramic strings as



well as mixed insulator strings. Because the resolution of this
data is often great, 7360×4912 is the highest. As a result,
we first downsize the original image of the datasets. Then,
separate the primary image into numerous smaller ones by
segmenting it. Finally, two datasets were combined for offline
Mosaic, MixUp, and random data improvement, bringing the
total number of images in the dataset to 11,111. The training,
validation, and test sets are divided 8:1:1.

B. Training Strategy

We improved on the YOLOv5 model’s version 7.0. The ex-
periment employed the YOLOv5n model’s pre-training weight,
a learning rate of 0.01, 150 epochs, a batch size of 90,
SGD as the optimization function, momentum of 0.937, label
smoothing of 0.0005, and 3 epochs of warmup epochs. After
training, compare your model against models like MobileNet
v3 [26], Shufflenet [27], and PP-LCNet [28].

C. Evaluating Indicator

The main purpose of this paper is to propose a lightweight
new network structure to adapt to the deployment of UAV
terminal equipment under the premise of ensuring the accuracy
of the model, that is, to improve the accuracy of the model and
reduce the amount of model parameters and FLOPs. The FPS
represents the frame rate per second, or the number of images
that can be processed per second, and is used to evaluate
the speed of detecting insulator strings, the GFLOPs, and
the number of as the space complexity and time complexity
indicator. The accuracy (P) and recall (R) of the model training
samples must be multiplied to determine the average precision
(AP). The average precision of the entire class (mAP) is the
average value of the detection AP of different targets, and it
is expressed as:

P =
TP

TP + FP
(6)

R =
TP

TP + FN
(7)

The number of properly recognized defective insulator strings
is represented by TP, the number of incorrectly identified
normal insulator strings as defective insulator strings is repre-
sented by FP, and the number of incorrectly predicted defective
insulator strings as normal insulator strings is represented by
FN.

AP =

∫ 1

0

PdR (8)

mAP =
1

n

n∑
i=0

APi (9)

Among them, n represents the total number of categories in
the training sample set, and i represents the current category’s
number.

D. Result Analysis

Table I illustrates the detection results of the insulator string
and defective insulator string categories of the method utilized
in the present paper. The precision measurement accuracy of
all categories also reached 94.1%. Among them, the detection
accuracy of the defect category reached 96.4%. As mentioned
above, the defect category belongs to the small target category.
The multi-scale feature extraction structure (Res2C3) was
designed to improve the fine detection accuracy of the defect
small target. After a lot of experimental analysis, when the
Res2C3 structure is used in the backbone and the FasterC3
structure is used in the neck network, the model will achieve
the most stable and ideal results.

To assess the efficacy of the improved C3 module, we
designed ablation experiments on defect class detection., and
the results are summarized in Table II. Model 1 refers to the
baseline model; Model 2 is the backbone network using the
improved Res2C3 structure; Model 3 represents the use of
the FasterC3 structure in the neck network; and Model 4 is
the combined use of the Res2C3 and FasterC3 structures in
the backbone and neck networks. With the implementation of
each improved module, both its GFLOPs and the number of
parameters gradually decrease, demonstrating the effectiveness
of our method in reducing model weight. The combination
of these two modules yields the highest performance results.
The detection accuracy of insulator string defect may reach
96.4% using only 1.5M parameters and 3.6 billion floating-
point operations per second, demonstrating the viability of our
improved methods.

TABLE I
PRECISION, RECALL AND MAP RESULT OF IMPROVED.

Precision Recall mAP

All 0.941 0.854 0.912

Defect 0.964 0.845 0.901

Insulator 0.917 0.864 0.923

TABLE II
ABLATION EXPERIMENTAL.

Res2C3 FasterC3 Precision GFLOPs Parameters

Model1 × × 0.955 4.1 1.8M

Model2
√

× 0.969 3.9 1.7M

Model3 ×
√

0.960 3.8 1.6M

Model4
√ √

0.964 3.6 1.5M

Table III demonstrates that the method we proposed in
the present research outperforms the current mainstream
lightweight backbone network in terms of parameter amount
and actual frame number. In terms of average precision,
our approach outperforms the PP-LCNet, MobileNet v3, and
ShuffleNet v2 networks, as well as YOLOv5’s lightweight n
model on GFLOPs.

Experiment results show that when lightweight networks
like MobileNet v3 and PP-LCNet are applied to train on this



TABLE III
COMPARED WITH OTHER NETWORKS.

Precision Recall mAP Parameters GFLOPs

PP-LCNet 0.909 0.788 0.882 1.616M 3.3

ShuffleNets v2 0.891 0.768 0.862 2.141M 4.3

MobileNet v3 0.899 0.787 0.879 1.625M 2.5

YOLOv5n 0.938 0.880 0.936 1.761M 4.1

Proposed Network 0.941 0.854 0.912 1.552M 3.6

(a) (b)

(c) (d)

Fig. 5. The partial testing results.(a) represents the detection results of insulator string targets at different distances, including both far and near targets. (b),
(c), and (d) represent the detection results of the model at the defect parts of insulator strings made of various materials.

dataset, the results is not as excellent as the least n version
model in YOLOv5. As a consequence, rather than rebuilding
the backbone network, this paper redesigns the backbone and
neck networks to obtain a lightweight insulator string detection
network.

Figure 5 exhibits the results of testing the training weights
using the test sets. Based on the test results, our method can
accurately locate small target defect sites on insulator strings.
Moreover, our proposed method demonstrates strong gener-
alization ability and can identify various types of insulator
strings and their respective defect sites, including ceramic,

glass, and composite insulator strings.ulator strings and their
defect portions, such as ceramic, glass, and composite insulator
strings.

V. CONCLUSION

In this paper, a lightweight and accurate detection approach
for insulator strings and their defective portions is provided.
To improve detection accuracy, this method mainly relies on
the Res2C3 module to perform multi-scale feature information
interaction. FasterC3 aims to eliminate redundant channel
information, improve the number of parameters and memory



accesses, and successfully accomplish model lightweighting.
The accuracy and speed of the insulator string detection model
can be improved by replacing the improved C3 structure on the
basis of the YOLOv5 model, thereby meeting the requirements
of deploying lightweight insulator string detection models on
UAVs and other terminal equipment and realizing end-to-
end real-time insulator string detection. After lightweight, the
model’s parameter is only 1.5M, which is 1.7M less than the
smallest model parameter count in the latest YOLOv8. And
the weight size of the model only accounts for 3.4M, and the
inference speed is substantially faster when compared to some
lightweight networks. Some model compression approaches,
such as pruning and knowledge distillation, will be introduced
into object detection tasks in future work to improve the
performance of the lightweight network even more.
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