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Abstract

Grönwall’s function G is defined for all natural numbers n > 1 by
G(n) = σ(n)

n·log log n
where σ(n) is the sum of the divisors of n and log

is the natural logaritm. We require the properties of extremely abundant
numbers, that is to say left to right maxima of n 7→ G(n). We also
use the colossally abundant and hyper abundant numbers. A number n
is said to be colossally abundant if, for some ϵ > 0, σ(n)

n1+ϵ ≥ σ(m)

m1+ϵ for
all m > 1. Let us call hyper abundant an integer n for which there
exists u > 0 such that σ(n)

n·(log n)u
≥ σ(m)

m·(log m)u
for all m > 1. The

Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with
real part 1

2
. It is considered by many to be the most important unsolved

problem in pure mathematics. There are several statements equivalent
to the famous Riemann hypothesis. We state that the Riemann hypothe-
sis is true if and only if there exist infinitely many consecutive colossally
abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′). In addi-
tion, we prove that the Riemann hypothesis is true when there exist
infinitely many hyper abundant numbers n with any parameter u ⪆ 1.
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1 Introduction

As usual σ(n) is the sum-of-divisors function of n∑
d|n

d,

where d | n means the integer d divides n. In 1997, Ramanujan’s old notes
were published where it was defined the generalized highly composite num-
bers, which include the superabundant and colossally abundant numbers [1].
A natural number n is called superabundant precisely when, for all natural
numbers m < n

σ(m)

m
<

σ(n)

n
.

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)

n1+ϵ
≥ σ(m)

m1+ϵ
for (m > 1).

Every colossally abundant number is superabundant [2]. Let us call hyper
abundant an integer n for which there exists u > 0 such that

σ(n)

n · (log n)u
≥ σ(m)

m · (logm)u
for (m > 1),

where log is the natural logaritm. Every hyper abundant number is colossally

abundant [3, pp. 255]. In 1913, Grönwall studied the function G(n) = σ(n)
n·log logn

for all natural numbers n > 1 [4]. Next, we have the Robin’s Theorem:

Proposition 1 Let 3 ≤ N < N ′ be two consecutive colossally abundant numbers,
then

G(n) ≤ Max
(
G(N), G(N ′)

)
when satisfying N < n < N ′ [5, Proposition 1 pp. 192].

There are champion numbers (i.e. left to right maxima) of the function
n 7→ G(n):

G(m) ≤ G(n)

for all natural numbers 10080 ≤ m < n. A positive integer n is extremely
abundant if either n = 10080, or n > 10080 is a champion number of the func-
tion n 7→ G(n) (Note that, in the reference paper it is defined the inequality
as G(m) < G(n) [6, Definition 3 pp. 5]. However, the Propositions 2 and 3 are
still valid under the current definition with the inequality G(m) ≤ G(n)). In
1859, Bernhard Riemann proposed his hypothesis [7]. Several analogues of the
Riemann hypothesis have already been proved [7].
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Proposition 2 The Riemann hypothesis is true if and only if there exist infinitely
many extremely abundant numbers [6, Theorem 7 pp. 6].

We use the following property for the extremely abundant numbers:

Proposition 3 Let N < N ′ be two consecutive colossally abundant numbers and
n > 10080 is some extremely abundant number, then N ′ is also extremely abundant
when satisfying N < n < N ′ [6, Lemma 21 pp. 12].

This is our main theorem

Theorem 1 The Riemann hypothesis is true if and only if there exist infinitely many
consecutive colossally abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′).

The following is a key Corollary.

Corollary 1 The Riemann hypothesis is true when there exist infinitely many hyper
abundant numbers N ′ with any parameter u ⪆ 1, where the symbol ⪆ means “greater
than or approximately to”.

Putting all together yields a new criterion for the Riemann hypothesis.
Note also that, for all u > 0 [3, pp. 254]:

lim
n→∞

σ(n)

n · (log n)u
= 0

and so, we claim that there could be infinitely many hyper abundant numbers
with any parameter u ⪆ 1.

2 Central Lemma

Lemma 1 For two large enough real numbers y > x:

y

x
≫ log y

log x

where ≫ means “much greater than”.

Proof We have y = x+ ε for ε > 0. We obtain that

log y

log x
=

log(x+ ε)

log x

=
log

(
x · (1 + ε

x )
)

log x
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=
log x+ log(1 + ε

x )

log x

= 1 +
log(1 + ε

x )

log x
and

y

x
=

x+ ε

x

= 1 +
ε

x
.

We need to show that (
1 +

log(1 + ε
x )

log x

)
<

(
1 +

ε

x

)
which is equivalent to (

1 +
ε

x · log x

)
<

(
1 +

ε

x

)
using the well-known inequality log(1+x) ≤ x for x > 0. For x large enough, we have

ε

x
≫ ε

x · log x .

In conclusion, the inequality
y

x
≫ log y

log x
holds on condition that y > x are both large enough. □

3 Proof of Theorem 1

Proof Suppose there are not infinitely many consecutive colossally abundant numbers
3 ≤ N < N ′ such that G(N) ≤ G(N ′). This implies that the inequality G(N) ≥
G(N ′) always holds for N large enough when 3 ≤ N < N ′ is a pair of consecutive
colossally abundant numbers. That would mean the existence of a single colossally
abundant number N ′′ such that G(n) ≤ G(N ′′) for all natural numbers n > N ′′

according to Proposition 1. We use the Proposition 3 to reveal that under these
preconditions, then there are not infinitely many extremely abundant numbers. This
implies that the Riemann hypothesis is false as a consequence of Proposition 2. By
contraposition, if the Riemann hypothesis is true, then there exist infinitely many
consecutive colossally abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′).

Now, suppose that N ′′ is the greatest extremely abundant number such that
N ′′ < N ′ for a pair of consecutive colossally abundant numbers 3 ≤ N < N ′ when
G(N) ≤ G(N ′). We know that N ′′ must be a colossally abundant number by Propo-
sition 3. By Proposition 1, we know that G(N) ≤ G(n) ≤ G(N ′) when satisfying
N < n < N ′. So, if n or N is a extremely abundant number, then N ′ would be
extremely abundant as well by Proposition 3. Hence, we assume that there is a finite
set of colossally abundant numbers S such that M ∈ S implies that N ′′ < M < N ′.
Let’s take the greatest number M ′′ such that M ′′ ∈ S and for each element M ∈ S
we have G(M ′′) ≥ G(M). Therefore, it is necessary that either M ′′ or N ′ be an
extremely abundant number. In any case, we obtain always another new extremely
abundant number. Since we took the value of the colossally abundant number N ′

into an arbitrary way, therefore if there exist infinitely many consecutive colossally
abundant numbers 3 ≤ N < N ′ such that G(N) ≤ G(N ′), then there exist infinitely
many extremely abundant numbers. This implies that the Riemann hypothesis is
true by Proposition 2 after using the modus ponens.

The result is done. □
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4 Proof of Corollary 1

Proof Suppose there exists a large enough hyper abundant numbersN ′ with a param-
eter u ⪆ 1. We know that N ′ must be also a colossally abundant number. Let N
be the greatest colossally abundant number such that 3 ≤ N < N ′, which means
that N and N ′ is a pair of consecutive colossally abundant numbers. By definition
of hyper abundant, we have

σ(N ′)
N ′ · (logN ′)u

≥ σ(N)

N · (logN)u

which is the same as

σ(N ′) · (logN)u

N ′ · (logN ′)u · log logN ≥ σ(N)

N · log logN = G(N).

Hence, it is enough to show that

G(N ′) =
σ(N ′)

N ′ · log logN ′ ≥ σ(N ′) · (logN)u

N ′ · (logN ′)u · log logN
which is equivalent to

(logN ′)u

(logN)u
≥ log logN ′

log logN
.

Since u ⪆ 1, then we only need to show that the inequality

logN ′

logN
≫ log logN ′

log logN
.

holds on condition that logN ′ > logN are both large enough by Lemma 1. Conse-
quently, this arbitrary large enough hyper abundant numbers N ′ with a parameter
u ⪆ 1 reveals that G(N) ≤ G(N ′) holds on anyway. In this way, if there exist
infinitely many hyper abundant numbers N ′ with any parameter u ⪆ 1, then there
are infinitely many consecutive colossally abundant numbers 3 ≤ N < N ′ such that
G(N) ≤ G(N ′).

Finally, the proof is complete by Theorem 1. □
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