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Abstract—BETA-FL provides a distributed federated learning
framework implemented for supply chains by tightly integrating
private-permissioned blockchain for the trusted alliance among
various actors involved in the supply chain. With a trusted
ledger as the moderator in federated learning workflow, our
approach ensures protection against malicious backdoor attacks
on performance from both server and clients. Additionally, our
asynchronous training regime allows scalability to a large number
of federated clients with small and constant delay caused due
to an event-triggering scheme. We showcase the milk powder
classification task as a potential use-case in the food supply
chain to avoid food wastage. Finally, we facilitate a dedicated
channel for regulatory bodies in our blockchain environment for
inspections and audits pertaining to the functioning of the supply
chain.

Index Terms—Blockchain, Hyperledger Fabric (HLF), Fed-
erated Learning (FL), Decentralized machine learning, Supply
Chains, Asynchronous training

I. INTRODUCTION

A supply chain is the network of various stakeholders,
operations, information, and resources involved in order to
facilitate flow of goods from suppliers to customers. To
establish proper functioning, the supply chain demands a huge
amount of trust, cooperation, and responsibility sharing among
different actors in the chain. Such expectations are hard to
achieve in a conventional setting, therefore blockchain has
recently emerged as the de-facto approach to provide highly
trusted decentralized ledger technology to ensure security,
integrity, and auditability in supply chains also covered in the
previous works [1], [2], [3], [4], [5]. Nevertheless, these works
do not take advantage of the data-driven approach to maximize
the overall efficiency of the supply chains.

The use of machine learning (ML) in modern supply chains
can enable smart decision-making by capitalizing on the
insights gained from learning through enormous amount of
gathered data. Unlike the typical ML, where all the datasets are
combined centrally for training compromises on data privacy,
federated learning (FL) provides an innovative solution for
distributed learning over multiple clients, each owning their
local dataset to train local models. Rather than sharing raw data
samples, these clients exchange trained local model updates
in form of gradients with a global server, which are then

aggregated by the server and returned back to the participating
clients for further training. Subsequently, the clients train
locally after receiving the aggregated model updates from the
server, and this process follows until convergence.

The design of supply chains inherently involves distribution
and a lack of trust between systems, making the implemen-
tation of blockchain technologies particularly suitable. By
utilizing a distributed ledger, all transactions between supply
chain stakeholders can be managed, and any necessary data
can be stored in a manner that is accessible to all partic-
ipating actors under controlled conditions. Different actors
holding different roles and responsibilities within a consortium
of supply chain members can be moderated through smart
contracts and channels (discussed in sections II-B2 & II-B1)
in a closed private blockchain. Such a blockchain network
through its smart contracts and read-write permissions can be
configured to accommodate all complex relationships between
participating actors e.g. who has rights to perform specific
actions, who has rights to access specific data, what type of
transactions are supported and how are they validated and
agreed.

Researchers have made attempts in [6], [7], [8] to integrate
blockchain with FL in order to address the limitations of
traditional FL. The main issues with standard FL include
the inability to detect malicious trainers, who can disrupt
the training process by uploading incorrect gradients, and the
vulnerabilities associated with using a centralized server, such
as the risk of a single point of failure and scalability problems.

Our framework takes it even further by providing closely
integrated FL with blockchain to circumvent different kinds of
backdoor attacks from server and client side. Using distributed
trusted ledger as a mediator takes most of orchestration respon-
sibilities from the server which in turn avoids potential attacks
where server tries to steer gradients in certain direction or tries
to collude with malicious clients. This happens as the infor-
mation about which specific update belongs to which client
is obfuscated from the server. Moreover, malicious activities
from clients can be monitored and scrutinized with individ-
ual gradients checks before aggregation to cease them from
sending poisonous updates. Additionally, the use of event-
based asynchronous updates in FL can provide a flexible and



powerful architecture for building real-time systems, which
can improve performance, reduce communication overhead,
and enable continuous learning and adaptation. Unlike BEAS
[7], our closely-knitted infrastructure facilitates asynchronous
FL aggregation of model updates triggered by chain’s events
service defined based on the desired criteria (see II-B4) to
provide full autonomy to the blockchain. Furthermore, our
setup enables the efficient utilization of outdated gradients
by preserving the record of updates on the distributed ledger,
which otherwise would have been discarded.

Our work demonstrates the utilization of a private-
permissioned blockchain, specifically Hyperledger Fabric
(HLF [9]), in combination with FL to track the quality and
safety parameters of food. Various organizations owning local
datasets on quality parameters for milk powder participate in
FL via a dedicated HLF channel. The objective is to enhance
risk management capabilities and minimize food waste by
delivering predictions regarding potential quality degradation
and contamination based on measured food quality parameters
and environmental conditions.
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Figure. 1. Platform Architecture to demonstrate BETA β-FL with HLF, IPFS
technologies used in a Food Supply Chain.

II. SYSTEM ARCHITECTURE

Hyperledger Fabric (HLF) [9] is the first open-source pri-
vate blockchain tailored for permission-based networks within
private environments that can be applicable to various business
use-cases. To interact with the HLF, all participants need an
identity and a valid certificate provided by certificate author-
ities (CA). HLF has a built-in Membership Service Provider
(MSP) that enables organizations to authenticate and authorize
users based on their digital certificates. This ensures that only
trusted and authorized nodes can participate in the network,
making it difficult for attackers to launch Sybil attacks [10]
by creating fake identities. HLF provides identity management
tools that allow network administrators to manage and control
access to the network. For example, administrators can use
role-based access controls (RBAC) to limit the privileges of
users based on their roles and responsibilities, preventing
malicious actors from gaining too much control over the
network.

HLF network primarily consists of three types of nodes:
client, peer, and ordering-service-node or orderer. A client is

a type of node that creates and submits a transaction to the
endorsers and broadcasts it to the ordering service. Peers are
the fundamental nodes of the network. They are responsible for
committing transactions and holding the ledger, which consists
of transactional data. Finally, the orderer is responsible for
generating a block and maintaining the consistency of the
blockchain. HLF stands out from other blockchain types [11]
due to its use of deterministic consensus algorithms. These
algorithms ensure the accuracy and finality of any approved
block by a peer, resulting in higher transactional throughput
than its public blockchain counterparts. Overall, the generic
components of HLF provide a highly reliable and secure
platform for our work.

HLF employs Transport Layer Security (TLS) [12] to en-
able secure communication between nodes. This is achieved
through the use of TLS certificates, which allow for Fabric
nodes and clients to sign and encrypt their conversations. As
a prerequisite for any channel communication within HLF,
a valid TLS Certificate must be present. Additionally, the
auditing of transaction initiators within HLF makes it possible
to trace transactions and identify any suspicious activities.

A. Supply chain infrastructure

Our supply chain infrastructure utilizes checkpoints to mon-
itor progress at every stage, collecting data that includes indi-
cators of food quality degradation (such as increased microbial
counts or adulteration) and contamination. This system allows
for real-time insights into the condition of food products, with
each checkpoint recorded on a ledger. Predictive analysis can
be used to anticipate potential contamination points, while
the data collected can also be used to analyze supply chain
efficiency, identify bottlenecks, and optimize the process,
leading to reduced costs and improved productivity. Real-
time monitoring provides a continuous and accurate record of
transportation and storage conditions, enhancing traceability.

The process of measuring food quality involves the use of
measurement checkpoints (depicted in Fig. 1), which consist of
two main systems: an Internet of Things (IoT) environmental
sensing system and a photonic system. The IoT sensing system
comprises an IoT edge controller and sensors that measure the
humidity and temperature. On the other hand, the photonic
food scanner, which is based on the device from H2020
project PhasmaFOOD1 that uses a combination of Ultraviolet,
Visible, and Near Infrared spectrometers and a camera. These
devices take measurements in quick sequence from the same
point, providing a comprehensive analysis of the food quality
parameters. The dataset utilized for the FL use case consists
of these spectrograms that is elaborated in II-D.

B. Blockchain related Components

1) Channels: As opposed to a permissionless environment,
where all information is stored on a public ledger necessitating
the storage of a copy of all the data by every entity in the
chain, a permissioned-based environment allows to carry out

1https://phasmafood.eu/
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Figure. 2. Intertwined Blockchain and FL architecture.

private and confidential transactions. Therefore, HLF employs
channels to provide a key abstraction for the shared informa-
tion among different parties. A channel is a private “subnet”
of communication pathways between two or more specified
network participants. The use of HLF enables the restriction
of access to individual channels, where members are only
able to store information for the channel they are associated
with. Within this architecture, various channels are defined for
specific purposes. e.g. the Federated Learning Channel (FLC)
is designated for tasks related to federated learning. The User
and Resources Channel is for registering resource entities of
supply chain actors, while the Supply Chains Channel is for
creating checkpoints in the product cycle. Additionally, the
Data Sharing Channel is available for direct transmission (if
needed) of data readings from sensors.

2) Smart Contracts: Smart contracts are business logic and
executable contracts that define a set of rules for negotiating
and these are invoked by clients who want access to the
network. In our architecture, we use a different smart contract
(in HLF terms, also referred as part of the “chaincode”)

for each channel e.g. we use a chaincode (typically used
to group related smart contracts for deployment) to create
a transaction for a model to be stored on HLF at the FLC.
Another advantage of implementing the chaincode on the FLC
in our setup is the ability of accessing fine-grained models’
information (local model and global model updates) of any
particular round of FL from the chain in any desired manner.

3) HLF’s Channel-based event services: To ensure precise
control over peers’ data at the channel level, our architecture
employs channel-based event-triggering schemes. An asyn-
chronous FL workflow is carried out using a dedicated FLC
to read and write FL global and local updates to/from the
blockchain. Events are triggered based on specific criteria
outlined in II-B4, such as when the required number of
local model updates are registered on the chain to enable
model aggregation or when a global model update is recorded
on the chain to initiate subsequent rounds of training. The
ledger maintains a queue of local model updates for each
FL round until the criteria is met, after which the queue is
reset. The channel configuration facilitates requests to listen



to these events from outside the peer’s organization. This
channel-based event service not only provides a high degree
of reliability but also ensures that events are not missed due
to issues such as connectivity or peers joining a network that
is already running.

4) Criteria: Based on pre-decided criterion events can be
defined to facilitate the aggregation step in FL which is quite
flexible and can be modified (as per need) before the next
round of training. Only after the desired criterion is fulfilled
an event is fired that would in turn allow the FL Server to do
the model updates aggregation. Some examples of criteria used
in our experiments are: completion of training of a minimum
number of local FL clients, the inclusion of FL clients from the
given organization, the inclusion of specific FL clients based
on identities created by CA, a minimum number of model
updates from current FL round and from previous rounds that
were unused to include contributions of straggler FL clients.
By delegating the responsibility of aggregating local model
updates to the distributed ledger, this approach enables the
ledger to determine when aggregation should occur (based on
events) and which specific local model updates to use. These
determinations are made in accordance with predefined criteria
that have been agreed upon by all participants and outlined in
the smart contract.

5) IPFS: To overcome a significant challenge posed by the
high cost of on-chain storage in the blockchain when working
with large and numerous FL models, we use the InterPlanetary
File System (IPFS) [13]. It is an off-chain model distributed
storage solution that has no single point of failure and provides
content-addressed block storage to store and retrieve data
efficiently. Prior works such as [14], [15] also motivate the
use of IPFS to off-load huge storage demands from the chain.
Since IPFS uses content identifier (CID) generated based on
the content’s cryptographic hash to refer to its content which
also helps to avoid duplicate redundant updates. As a result,
combining this with transactions on ledger aids in avoiding
potential attacks such as Lazy Clients, as described in [16], in
which some clients attempt to reduce their computation costs
by replicating model updates from other honest clients. So,
we log model update transactions created with this short CID
in the HLF instead of actual FL model updates in our setup.

C. Federated Learning Implementation

FL is a distributed learning regime with physically distinct
clients {1, 2, ..., N} that work collaboratively to train a model
from a large dataset D formed out of N independent non-
overlapping data subsets D1,D2, ...,DN , i.e. D =

⋃N
k=1Dk.

Each client k trains its local model wk using its own local
dataset Dk with mk data samples. We follow the similar
approach as in FedAvg [17], where a subset of S clients are
randomly selected out of N in every round after initializing
with a global model in the beginning. These clients perform
local training using stochastic gradient descent (SGD) for a
certain number of local iterations to update wk ← wk −

η∇Fk(w
k) with η as learning rate by solving local objective

in (1):

Fk(w) =
1

mk

∑
i∈Dk

fi(w) (1)

where fi(w) = ℓ(xi, yi) loss prediction on sample (xi, yi).
Overall, global objective function in (2) is the contribution of
individual local objectives weighted by fraction of local data
sample size over total data sample size.

f(w) =

N∑
n=1

mk

m
Fk(w) (2)

So, in each round r all participating client Ck present in S
compute gradient update gk = ∇Fk(wr) and the server uses
the gradients from these clients for aggregation and updates
the global model wr+1 ← wr − η

∑S
k=1

mk

m gk and client
update is given by wk

r+1 ← wr − ηgk. In our setting, these
model updates are administered through HLF where all local
updates are written on the chain asynchronously (with hash on
ledger & its corresponding updates on IPFS) and aggregation
on the server is triggered when the desired criteria are fulfilled
described by events. Algorithm 1 captures complete details of
our implementation of BETA β-FL which is complimented by
Fig 2.

D. Experimental Setup

The experiment simulates a use case aimed at identify-
ing adulteration in skimmed milk powder during its journey
through the supply chain. The blockchain network records the
milk powder’s progress through the supply chain with the
help of defined measurement checkpoints. The milk powder
is susceptible to various methods of adulteration, such as the
addition of neutral fillers to increase its volume. To detect any
such fillers, we employ spectrometry, comparing the spectral
images of the adulterated samples with those of the pure
skimmed milk powder.

Our blockchain implementation is created using HLF, with
smart contracts written in node.js. We make use of HLF
infrastructure to define channels such as FLC, etc. and channel
based event services. Additionally, we rely on CouchDB as the
underlying blockchain database. Our evaluation is performed
on a Google Cloud Server, where each entity is deployed in
separate Docker containers. The server comprises 2 CPUs, 8
GB of RAM, and 35 GB of HDD.

In general, we have the following organizations: Supply
Chain Actors (Seed sellers, Farmers, Distributors, Processors,
Storage Owners), Wholesalers Retailers, Consumers, and Reg-
ulatory bodies. We have two peers per organization: one for
endorsing and other for committing. These peers are nodes
on the network that host a copy of the ledger and participate
in the consensus process to validate transactions and update
the ledger. Endorsing peer validates and endorses transactions,
while committing peer receives and validates the endorsed
transaction before updating their copy of the ledger. These
peers play crucial role in the consensus process to ensure all
copies of the ledger are consistent and tamper-proof.



Algorithm 1: BETA β-FL Algorithm
1: Input: Set of N participating clients, where client Ck

holds its own local dataset Dk for local training with
local model parameter wk.
Parameter: learning rate η, sampling fraction S

N , local
epochs E, local minibatch size B, total rounds R.

2: Initialise Randomly sample S clients out of total N and
initialise global model weights (w0) at round = 0.

3: for each round r = 1, 2, ..., R do
4: Define local model event’s condition for triggering

aggregation, see II-B4.
5: for each client Ck from set of S clients in parallel do
6: Train client on local dataset Dk with batch size B

and learning rate η for E epochs.
7: After training log the local gradients (gk) on IPFS

and its hash on HLF along with other attributes:
client id, round number, dataset size, etc. and
populate the queue.

8: end for
9: if Criterion is fulfilled then

10: Fire local model event to trigger gradients
aggregation process at server. Gradients utility is
checked before to avoid redundant, null updates, etc.

11: end if
12: if Aggregation is completed then
13: Log current global model wr on IPFS with its hash

on HLF and fire global model event to initialise
local models with wr by reading it from IPFS with
hash provided from HLF.
Now, r = r + 1 and proceed from Step 4.

14: end if
15: end for
16: Output: Entire history of local and global updates on

IPFS and its corresponding summary on HLF.

In this research, we employed a Hamamatsu C12880MA2

spectrometer under UV illumination for visible spectra (400-
700 nm) of pure and adulterated skimmed milk powder. These
spectrograms form our dataset (seen in Fig. 3) with 4 labeled
classes with varying amounts of adulteration from pure to
completely adulterated achieved by mixing with several pro-
tein powders (e.g. whey, soy, and hemp proteins) in different
concentrations.

To simplify matters, we have divided the independent and
identically distributed (IID) dataset into four client organiza-
tions - producers, storage owners, retailers, and wholesalers -
with the same feature and label space. This horizontal split
can be expanded to include more clients and organizations. It
should be noted that relying solely on training data from a
single client would not be sufficient due to the limited amount
of labeled data available at each client. This highlights the im-
portance of collaborative learning through FL, which enables

2www.hamamatsu.com/eu/en/product/optical-sensors/spectrometers/mini-
spectrometer/C12880MA.html

the utilization of knowledge learned from other clients. Each of
the four clients trains a model to perform a classification task.
The model comprises three one-dimensional Convolutional
layers, with a kernel size of 10 and a stride of 2, followed by a
Linear layer for the four labeled classes. The implementation
is done using PyTorch [18].
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Figure. 3. Spectrogram dataset for milk powder with 4 classes.

TABLE I
AVERAGE ACCURACY ON LAST ROUND (10TH) IN EXPERIMENTS

Exp Nr. Global Client 1 Client 2 Client 3 Client 4
Experiment 1a 0.967 0.9686 0.9686 0.9682 0.967
Experiment 2b 0.967 0.9634 0.9684 0.9656 0.9642
Experiment 3c 0.972 0.9709 0.9724 0.9704 0.968
aSynchronous FL training without blockchain.
bSynchronous FL training with reading & writing models on blockchain.
cBETA β-FL.
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Figure. 4. Mean and standard deviation of Accuracy on Global Server.

III. RESULTS AND CONCLUSIONS

We conducted three types of experiments: standard syn-
chronous FL without blockchain, synchronous FL training



with model updates stored on HLF and IPFS, and our BETA β-
FL which allows asynchronous training using event-triggered
services. All experiments utilized the same hyperparameters,
with local epochs (E) set to 5, mini-batch size (B) at 32, and
learning rate (η) of 0.001, trained for 10 FL rounds. Results
from Fig. 4 and Table I show that there is little difference
in accuracy between the three experiments. However, our
approach offers a slight improvement as it avoids redundant
model updates. Evaluation of the global model was conducted
on a separate validation milk powder dataset.

To analyze the experiments, the FL pipeline was divided
into different parts to determine the execution times of various
operations, including local client training, writing trained local
updates to HLF via IPFS, and the delay caused by using the
events service in the BETA β-FL approach. Results showed
that the average local training time per client is 0.833 seconds,
while writing these local gradients to HLF via IPFS takes
about 8.736 seconds, and the average delay caused by the
events service is 2.5134 seconds. These findings suggest that
clients should train more local epochs before sharing updates
to the ledger via IPFS. The asynchronous setup parallelizes
operations using the event service, which offsets the fixed cost
of the delay in listening to events happening twice in every
round. Overall, parallelizing these operations achieved signif-
icant gains, despite the training time and time to write/read
model updates to/from IPFS scaling with the size of model
parameters.

The highlight of our BETA β-FL approach is that it provides
reliable, secure, and auditable FL infrastructure that defends
against malicious threats from both server and clients. Our
utilization of a decentralized HLF within an asynchronous
setup results in a solution that is highly scalable, trustworthy,
and tamper-proof, albeit with a minor overhead related to
events service. This approach grants HLF more authority,
which opens up avenues for future research, such as utilizing
previously unused stale updates from slow clients to achieve
faster convergence. Additionally, other smart contracts can be
written to update hyperparameters of slow-performing clients,
such as reducing their local epochs, changing the batch size,
etc. to accelerate their training.

Our architecture is built on a private permissioned
blockchain (HLF), which ensures data confidentiality among
multiple supply chain stakeholders who may be competitors
or do not trust each other. However, organizations may need to
provide supply chain information to regulators to comply with
legal requirements, as mentioned in [2]. To address this, our
platform includes a dedicated channel for regulatory bodies
to access relevant information and evaluate supply chain per-
formance. Furthermore, starting in 2023, the German federal
government plans to implement a new supply chain act3, which
mandates companies to establish grievance mechanisms and
report on their activities to ensure improved human rights
protection.

3https://www.bundesregierung.de/breg-en/federal-government/supply-
chain-act-1872076
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