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Abstract: This paper tackles a longstanding problem in number theory: the infinitude of perfect
numbers. A perfect number is defined as a positive integer whose sum of all its divisors is equal to
twice the number itself. While Euclid’s method provides a framework for constructing even perfect
numbers using Mersenne primes, the infinitude of Mersenne primes remains an open question. If
there are finitely many Mersenne primes, then there would also be a finite number of even perfect
numbers. In this note, showing that there are finitely many Mersenne primes, we provide a partial
answer by proving that is false the infinitude of even perfect numbers. The proof utilizes elementary
techniques and relies on properties of the divisor sum function (sigma function) and the inherent
structure of prime numbers.
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1. Introduction

Prime numbers, the building blocks of integers, have fascinated mathematicians for
centuries. Their enigmatic distribution and seemingly random occurrence have fueled the
quest to understand their nature. Within this realm lies a special subset known as Mersenne
primes, giants in the prime number kingdom, named after Marin Mersenne, a 17th-century
French mathematician. Mersenne primes are a particular breed - they are prime numbers
that can be expressed in a very specific form: 2 raised to an exponent (n) minus 1 (2n − 1).
For example, 3 (22 − 1) and 7 (23 − 1) are both Mersenne primes. While this formula seems
simple, the resulting prime numbers can be colossal. Unlike many prime number searches,
which rely on complex algorithms, checking for Mersenne primes can be done with a
relatively simple formula. This has led to the rise of distributed computing projects like
the Great Internet Mersenne Prime Search (GIMPS), where volunteers contribute their
computers’ processing power to the hunt for these elusive giants.

The concept of perfect numbers has captivated mathematicians for millennia. Defined
as positive integers where the sum of their divisors equals twice the number itself, these
integers hold a unique charm. Euclid, the venerable Greek mathematician, established a
method to construct even perfect numbers using Mersenne primes. This discovery sparked
a centuries-long pursuit: are there infinitely many perfect numbers? For mathematicians,
the answer was not so intuitive. Indeed, the absence of a definitive proof left a lingering
question since the 3rd century BC. Rene Descartes, the 17th-century philosopher and
mathematician, and Leonhard Euler, another mathematical giant, built upon this question
and established crucial properties that perfect numbers must possess. Despite these efforts,
the question remained unanswered.

This paper aims to unveil the long-sought answer. Whether there are infinitely many
Mersenne primes or not still remains as an open question [1]. The Lenstra-Pomerance-
Wagstaff conjecture claims that there are infinitely many Mersenne primes and predicts their
order of growth and frequency [1]. By employing the concept of the divisor sum function
(sigma function) and delving into the properties of prime numbers, we will demonstrate a
crucial contradiction under the assumption that there are infinitely many Mersenne primes.
This contradiction will definitively prove the existence of only a finite number of even
perfect numbers.
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2. Materials and methods

The divisor sum function, denoted by σ(n), is an arithmetic function in number theory.
It’s essentially a way to represent the sum of all the positive divisors of a positive integer n.

Here’s a breakdown:

• Positive divisors: These are the positive integers that divide evenly into n, including
1 and n itself. For example, the positive divisors of 12 are 1, 2, 3, 4, 6, and 12.

• Sum: The sigma function adds up the values of all these positive divisors. So, σ(12)
would be 1 + 2 + 3 + 4 + 6 + 12 = 28.

Define f (n) as σ(n)
n . The multiplicity is an important property of this previous function.

Proposition 1. Let ∏r
i=1 qai

i be the representation of n as a product of prime numbers q1 < . . . < qr
with natural numbers a1, . . . , ar as exponents. Then [2, Lemma 1 pp. 2],

f (n) =

(
r

∏
i=1

qi
qi − 1

)
·

r

∏
i=1

(
1 − 1

qai+1
i

)

=
r

∏
i=1

qai+1
i − 1

qai
i · (q − 1)

=
r

∏
i=1

f (qai
i ).

Leonhard Euler studied the following value of the Riemann zeta function (1734) [3].

Proposition 2. We define [3, (1) pp. 1070]:

ζ(2) =
∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where qk is the kth prime number. By definition, we have

ζ(2) =
∞

∑
n=1

1
n2 ,

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel problem that

∞

∑
n=1

1
n2 =

∞

∏
k=1

q2
k

q2
k − 1

=
π2

6
,

where π ≈ 3.14159 is a well-known constant linked to several areas in mathematics such as number
theory, geometry, etc.

We can prove the value of the following constant

Υ =
∞

∑
n=0

1
2n = 2

using geometric series. Here’s the proof:

1. Identify the series as geometric: A geometric series is an infinite sum of terms where
each term is obtained by multiplying the previous term by a constant value (called
the common ratio). In this case:

• First term (a0) = 1
• Common ratio (r) = 1

2 (each term is multiplied by 1
2 to get the next term)



3 of 7

2. Formula for geometric series: The partial sum (Sn) of a finite geometric series can be
calculated using the following formula [4]:

Sn = a0 + a0 · r + a0 · r2 + . . . + a0 · rn = a0 ·
(1 − rn+1)

(1 − r)

where:

• a0 is the first term
• r is the common ratio
• n + 1 is the number of terms (infinite in this case)

3. Apply the formula to our series: In our case, a0 = 1 and r = 1
2 . We want to find the

sum for an infinite number of terms (n tends to infinity). However, a geometric series
only converges (meaning the sum approaches a specific value) when the absolute
value of the common ratio (|r|) is less than 1. In this case, | 1

2 | =
1
2 < 1, so the series

converges. Therefore:

Υ = lim
n→∞

Sn = lim
n→∞

1 ·
(1 − 1

2
n+1

)

(1 − 1
2 )

4. Simplifying the expression: 1
2

n+1
approaches zero as the power tends to infinity (any

number raised to the power of infinity approaches zero if the absolute value is less
than 1). So, we get:

lim
n→∞

1 ·
(1 − 1

2
n+1

)

(1 − 1
2 )

=
(1 − 0)
(1 − 1

2 )
= 2.

5. Conclusion: Therefore, the sum of the infinite geometric series ∑∞
n=0

1
2n converges to

2.

In mathematics, a Mersenne prime is a prime number that is one less than a power
of two. That is, it is a prime number of the form Mn = 2n − 1 for some integer n. If
n is a composite number then so is 2n − 1. Therefore, an equivalent definition of the
Mersenne primes is that they are the prime numbers of the form Mq = 2q − 1 for some
prime q. Numbers of the form Mn = 2n − 1 without the primality requirement may be
called Mersenne numbers. In about 300 BC Euclid showed that if 2q − 1 is prime then
2q−1 · (2q − 1) is perfect. Later, Leonhard Euler proved that all the even perfect numbers
are in the form that Euclid showed. This is known as the Euclid-Euler theorem.

Putting all together yields a proof that there are finitely many Mersenne primes.

3. Results

This is the main theorem.

Theorem 1. There are finitely many Mersenne primes.

Proof. Suppose that there are infinitely many Mersenne primes. Consider the sequence
PMn of prime numbers such that PMk is the kth Mersenne prime. Consider also the
geometric series

Υ =
∞

∑
n=0

1
2n = 2.

Now, let’s take the first Mersenne prime PM1 = 3. We can express the constant Υ as:

Υ = 1 +
1
2
+

1
4
+

1
8
+

1
16

+ . . .
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Multiplying it by 1
PM1+1 = 1

4 , we obtain:

1
4
· Υ =

1
4
+

1
8
+

1
16

+
1
32

+
1

64
+ . . . .

Next, we perform the following subtraction:

Υ − 1
4
· Υ =

(
1 − 1

4

)
· Υ

=
3
4
· Υ

=
1

f (PM1)
· Υ

= 1 +
1
2

.

Here, we use the fact that f (PM1) = f (3) = 4
3 by Proposition 1 (which defines the function

f ). Furthermore, we know from geometric series properties that:

1 +
1
2
=

∞

∑
n=1

1
2n +

1
2

= 1 +
1
4
+

1
8
+

1
16

+
1

32
+ . . .

> 1 +
1
8
+

1
16

+
1

32
+ . . .

We can repeat the process for the second Mersenne prime PM2 = 7. Here, Υ · 1
f (PM1)

=

1 + 1
4 + 1

8 + 1
16 + 1

32 + . . . is multiplied by 1
PM2+1 = 1

8 , resulting in:

1
8
· 1

f (PM1)
· Υ =

1
8
+

1
32

+
1
64

+
1

128
+

1
256

+ . . . .

Another subtraction yields:

1
f (PM1)

· Υ − 1
8
· 1

f (PM1)
· Υ =

(
1 − 1

8

)
· 1

f (PM1)
· Υ

=
1

f (PM2)
· 1

f (PM1)
· Υ

= 1 +
1
4
+

1
16

.

Following the same logic, we can deduce that:

1 +
1
4
+

1
16

=
∞

∑
n=1

1
2n +

1
4
+

1
16

= 1 +
1
4
+

1
32

+
1

64
+

1
128

+ . . .

> 1 +
1

32
+

1
64

+
1

128
+ . . .

where PM3 = 31. This process can be iterated for each Mersenne prime assuming there are
infinitely many. We are able to apply this iteration because of there are no two consecutive
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Mersenne numbers Mn and Mn+1 which can simultaneously be both primes for n > 2:
Remember that if a Mersenne number Mn is prime, then n is also prime. We arrive at:

Υ ·
∞

∏
n=1

1
f (PMn)

= Υ · 1
∏∞

n=1 f (PMn)
> 1

which is the same as
1

∏∞
n=1 f (PMn)

>
1
2

.

On the one hand, suppose that the infinite product ∏∞
n=1 f (PMn) converges. By the Euclid-

Euler theorem, we consider the sequence TMn of powers of two such that f (TMk · PMk) =
2 and PMk is the kth Mersenne prime. Thus, we have

1
∏∞

n=1 f (PMn)
=

f (TM1)

f (TM1) · ∏∞
n=1 f (PMn)

=
f (TM1)

f (TM1) · f (PM1) · ∏∞
n=2 f (PMn)

=
f (TM1)

f (TM1 · PM1) · ∏∞
n=2 f (PMn)

=
f (TM1)

2 · ∏∞
n=2 f (PMn)

=
f (TM1)

2
· 1

∏∞
n=2 f (PMn)

=
f (TM1)

2
· f (TM2)

f (TM2) · ∏∞
n=2 f (PMn)

=
f (TM1)

2
· f (TM2)

f (TM2) · f (PM2) · ∏∞
n=3 f (PMn)

=
f (TM1)

2
· f (TM2)

f (TM2 · PM2) · ∏∞
n=3 f (PMn)

=
f (TM1)

2
· f (TM2)

2 · ∏∞
n=3 f (PMn)

=

(
2

∏
n=1

f (TMn)

2

)
· 1

∏∞
n=3 f (PMn)

= . . .

=
∞

∏
n=1

f (TMn)

2
.

In addition, we know that f (TMn) < 2 for every natural number n. For that reason, we
can state that

∞

∏
n=1

f (TMn)

2
=

f (TM1)

2
·

∞

∏
n=2

f (TMn)

2

<
f (TM1)

2
·

∞

∏
n=1

f (TMn+1)

f (TMn)

=
1
2
·

∞

∏
n=1

f (TMn)

f (TMn)

=
1
2

.
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Since that implies the inequality 1
2 > 1

2 by transitivity, we reach a contradiction. Indeed, the

infinite product ∏∞
n=1

f (TMn+1)
f (TMn)

converges when ∏∞
n=1

f (TMn)
2 converges. By Propositions 1

and 2, we notice that

∞

∏
n=1

f (TMn+1)

f (TMn)
=

(
∞

∏
n=1

f (TMn+1)

2

)
·
(

∞

∏
n=1

2 · TMn

2 · TMn − 1

)

<

(
∞

∏
n=1

f (TMn+1)

2

)
·
(

∞

∏
k=1

q2
k

q2
k − 1

)

=

(
∞

∏
n=1

f (TMn+1)

2

)
· π2

6

=
2

f (TM1)
· f (TM1)

2
·
(

∞

∏
n=1

f (TMn+1)

2

)
· π2

6

<

(
∞

∏
n=1

f (TMn)

2

)
· π2

3
.

We can sustain the previous inequalities, because for every natural number n > 1 there
always exists at least one square prime power q2 between 2n and 2n+2 by a refinement of
the Bertrand’s postulate. Moreover, we know that the fraction x

x−1 decreases as the real
number x increases whenever x > 1. On the other hand, suppose that the infinite product
∏∞

n=1 f (PMn) diverges. Under this new assumption, we know that

1
∏∞

n=1 f (PMn)
= 0.

Since that implies the inequality 0 > 1
2 by transitivity, we reach another contradiction.

Consequently, by reductio ad absurdum, we can conclude that there are only a finite
number of Mersenne primes.

4. Discussion

The allure of Mersenne primes extends beyond perfect numbers. They hold immense
value in cryptography, the science of secure communication. Additionally, searching
for Mersenne primes pushes the boundaries of computational power, as checking if a
vast number like 2n − 1 is prime requires immense processing capabilities. As we delve
deeper into the world of Mersenne primes, we uncover a captivating interplay between
mathematics, history, and technology. Their discovery not only sheds light on the intricate
nature of prime numbers but also has practical applications in the modern world. This
quest to settle the question of the infinitude of Mersenne primes is not merely an intellectual
exercise. It delves into the very foundation of number theory, pushing the boundaries of
our understanding of integers and their properties.

5. Conclusion

The question of Mersenne primes’ infinitude remains a captivating problem in number
theory. Continued research in these areas might lead to a more comprehensive understand-
ing of perfect numbers and their connection to prime numbers. While the infinitude of
perfect numbers might seem like a purely theoretical pursuit, the underlying concepts
have practical applications. Perfect numbers play a role in areas like cryptography, where
understanding the distribution of prime factors is crucial for secure communication. In
conclusion, this proof sheds light on the limitations of these numbers while highlighting
the ongoing quest to understand better whether the odd perfect numbers exist or not. The
results open doors for further investigation, potentially leading to new discoveries in the
fascinating realm of number theory.
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