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Abstract—In this paper a new variant of Sharma-Arora’s fam-
ily of optimal eighth-order iterative methods for finding simple
root of nonlinear equation has considered. The several members
of the new modified family are numerically compared with other
relevant three-step methods. The numerical performances based
on the test examples agree with the theoretical analysis of the
presented family.
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I. INTRODUCTION

A vast number of real-life applications require finding a root
of a nonlinear equation written in the form f(x) = 0. In most
cases it is very difficult to find the exact root of nonlinear
equation, so many iterative procedures have been created in
order to achieve the approximate solution close enough to
the exact root. Probably the best-known iterative method is
Newton’s method (NM) given by

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, . . . (1)

For the simple root α (i.e. f(α) = 0 and f ′(α) 6= 0),
Newton’s method is quadratically convergent for sufficiently
good chosen initial point x0, which means that it generates a
sequence {xn} that satisfies

lim
n→∞

|xn+1 − α|
|xn − α|p

= C, (2)

for p = 2 and some constant C 6= 0.
In 1960. Ostrowski [1] developed the first multistep iter-

ative method introduced with the aim to overcome certain
theoretic limitations of the singlestep methods and to increase
the convergence order of iterative process. Simultaneously,
he proposed the efficiency index suitable for comparison of
various iterative methods. Namely, the efficiency index EI
is calculated by EI = p1/q where p is the convergence
order of the method, while q is the number of function

(or derivative) evaluations per iteration. Hence, the efficiency
index of Newton’s method is 21/2 ≈ 1.4142.

In literature one can find many papers presenting multipoint
iterative methods that contain Newton’s step (1) (or some of its
modifications) as the first step, with greater efficiency indices
(see for example [2], [3], [4], [5], [6], [7], [8]). In [9] Kung
and Traub conjectured that the iterative method which requires
n+ 1 function evaluations per iteration can reach at most 2n

convergence order in general. The methods that satisfy Kung-
Traub conjecture are known as optimal methods (see [10],
[11], [12], [13], [14], [15], [16], [14], [18], [19]). This research
presents a new family of such optimal eighth order methods.

The further text is organized as follows. The next section
shows the Sharma-Arora optimal family and the new similar
family of three-step methods. In the third section several
well-known iterative methods are employed for the numerical
comparison with the new family. Some concluding remarks
are given in the last section.

II. A NOVEL VARIANT OF SHARMA-ARORA’S FAMILY OF
METHODS

Recently, Sharma and Arora [19] have developed an optimal
family of three-point eighth-order methods with the following
form

wn = xn −
f(xn)

f ′(xn)
,

zn =M4(xn, wn),

xn+1 = zn −
f(zn)

f ′(xn)
·Qn,

(3)

where
Qn =

f ′(xn)− f [wn, xn] + f [zn, wn]

2f [zn, wn]− f [zn, xn]
, (4)

and f [·, ·] represents the first order divided difference. It is
obvious that the first step is Newton’s method, while M4(·, ·)
can be any optimal fourth order iterative scheme based on



Newton’s method. Thus, method (3) denoted by SA in further
text, reaches the eighth convergence order (i.e. satisfies (2) for
p = 8), requires one derivative and three function evaluations,
and therefore, its efficiency index is 1.6818.

The main contribution of this research is the new optimal
family of methods with slightly modified body structure com-
pared with SA family (3),

wn = xn −
f(xn)

f ′(xn)
,

zn =M4(xn, wn),

xn+1 = zn −
f(zn)

f ′(xn)− b · f(zn)
·Qn,

(5)

whereas the function Qn is defined by (4), and b is a real
parameter. It is obvious that the family (5) reduces to Sharma-
Arora’s family (3) for b = 0. The idea of using the real
parameter b has its origins in the research of Wu [20].

The following theorem represents a theoretic analysis of
the optimal convergence of the modified family, while its
numerical properties including the results for different values
of real parameter b are shown in the next section.

Theorem II.1 Let f : D ⊆ R → R be a sufficiently
differentiable on the open interval D which encloses the simple
root α. If x0 is sufficiently close to α, then the family of
methods defined by (5) is of eighth-order.

Proof: Let en = xn − α denotes the error of the n-th
approximation of the method. Let the coefficients ci be defined
by

ci =
1

i!

f (i)(α)

f(α)

for every integer value of i > 1. Thus, from the Taylor
expansion about α, we have

f(xn) = f ′(α)en

(
1 +

8∑
i=2

cie
i−1
n

)
+O(e9n) (6)

and

f ′(xn) = f ′(α)
(
1 +

8∑
i=2

icie
i−1
n

)
+O(e8n). (7)

Substitution of (6) and (7) into the Newton’s step yields

wn = α− c2e2n +
(
− 2c22 + 2c3

)
e3n

+
(
4c32 − 7c2c3 + 3c4

)
e4n + ...+O(e9n),

(8)

and consequently

f(wn) = f ′(α)
[
c2e

2
n − 2

(
c22 − c3

)
e3n

+
(
5c32 − 7c2c3 + 3c4

)
e4n + ...

]
+O(e9n).

(9)

If M4(xn, wn) is some optimal fourth-order iterative scheme,
then the error of the second step can be written in the form

zn−α = A4e
4
n+A5e

5
n+A6e

6
n+A7e

7
n+A8e

8
n+O(e9n), (10)

for some constants Ai, i ∈ {4, 5, 6, 7, 8}. By substituting (10)
into (6), it is easy to note that

f(zn) = f ′(α) · e4n
(
A4 +A5en +A6e

2
n +A7e

3
n

+(A8 +A2
4c2)e

4
n

)
+O(e9n).

(11)

By using (11) and (7) one can get

f(zn)
f ′(xn)−bf(zn) =A4e

4
n +

(
A5 − 2A4c2

)
e5n

+
(
A6 − 2A5c2 +A4(4c

2
2 − 3c3)

)
e6n

...+O(e9n).

(12)

Substitutions of (6), (9) and (11) into the expressions for
calculations of divide differences f [·, ·] provide a simple form
of Taylor’s expansion of function Qn about α, given by

Qn = 1 + 2c2en + 3c3e
2
n + 4c4e

3
n

+(c23 − c2c4 + 5c5)e
4
n +O(e5n).

(13)

Finally, after using (10), (12) and (13) and simplifying, the
third iteration step of the family (5) yields

xn+1 = α−A4

(
A4(c2 + b) + c23 − c2c4

)
e8n +O(e9n).

Therefore, it can be concluded that the family (5) is of optimal
eighth order with the error equation

en+1 = −A4

(
A4(c2 + b) + c23 − c2c4

)
e8n +O(e9n).

According to the given theorem, the presented modification
of SA family satisfies Kung-Traub conjecture of optimality
and preserves the efficiency index 1.6818.

Remark: Some expressions such as (8), (9) and (12) are
intentionally omitted to display in full form for the sake of
simplicity. All the displayed results can be easily verified using
Wolfram’s Mathematica software for symbolic computations.

III. NUMERICAL RESULTS AND COMPARISON

The members of the family (5) are denoted by New and the
indices that point out which optimal fourth order method has
been taken as the second step of (5). The second step zn =
M4(xn, zn) is chosen as they suggested in Sharma and Arora’s
research [19]. Namely, method (5) is denoted by New1, New2

and New3, if the second step has a form:

• zn = wn −
f(wn)

2f [wn, xn]− f ′(xn)
, [1],

• zn = wn −
( 2

f [wn, xn]
− 1

f ′(xn)

)
f(wn), [21],

• zn = wn −
(
3− 2f [wn, xn]

f ′(xn)

) f(wn)

f ′(xn)
, [19],

respectively. Similarly, when those fourth order schemes are
used for Sharma-Arora’s family members (3), they are denoted
by SA1, SA2 and SA3, respectively. The values of parameter
b are chosen such that |b| = 0.5 or |b| = 1.5.



Other relevant methods chosen for the comparison are well-
known three-step iterative schemes with similar theoretical
properties as (3) and (5). Namely, every method has efficiency
index 1.6818, requires four function/derivative evaluations per
iteration, and does not include calculation of second or higher
order derivatives.
• Bi, Wu and Ren’s method [22] (denoted by BWR):

wn = xn −
f(xn)

f ′(xn)
,

zn = wn −
2f(xn)− f(wn)

2f(xn)− 5f(wn)

f(wn)

f ′(xn)
,

xn+1 = zn −
f ′(xn) + (β + 2)f(zn)

f(xn) + βf(zn)

· f(zn)

f [zn, wn] + f [zn, xn, xn](zn − wn)
, β ∈ R,

where f [zn, xn, xn] =
f [zn,xn]−f ′(xn)

zn−xn
.

• Thukral and Petković’s method [23] (TP):

wn = xn −
f(xn)

f ′(xn)
,

zn = wn −
f(xn) + β1f(wn)

f(xn) + (β1 − 2)f(wn)

f(wn)

f ′(xn)
,

xn+1 = zn −
(
φ(t) +

f(zn)

f(wn)− β2f(zn)

+
4f(zn)

f(xn)

) f(zn)
f ′(xn)

, β1, β2 ∈ R,

where φ(t) = 1+2t+(5− 2β1)t
2+(12− 12β1+2β2

1)t
3 and

t = f(wn)/f(xn).

• Liu and Wang’s method [24] (LW):

wn = xn −
f(xn)

f ′(xn)
,

zn = wn −
f(xn)

f(xn)− 2f(wn)

f(wn)

f ′(xn)
,

xn+1 = zn −
[( f(xn)− f(wn)

f(xn)− 2f(wn)

)2
+

f(zn)

f(wn)− β1f(zn)

+
4f(zn)

f(xn) + β2f(zn)

] f(zn)
f ′(xn)

, β1, β2 ∈ R.

• Cordero, Torregrosa and Vassileva’s method [25] (CTV):

wn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)− f(wn)

f(xn)− 2f(wn)

f(xn)

f ′(xn)
,

xn+1 = un − Sn
f(zn)

f ′(xn)
, β1, β2, β3 ∈ R,

where

Sn =
3(β2 + β3)(un − zn)

β1(un − zn) + β2(wn − xn) + β3(zn − xn)
,

for β1, β2, β3 ∈ R, β2 + β3 6= 0 and

un = zn−
f(zn)

f ′(xn)

( f(xn)− f(wn)

f(xn)− 2f(wn)
+

1

2

f(zn)

f(wn)− 2f(zn)

)2
.

• Khan, Fardi and Sayevand’s method [26] (KFS):

wn = xn −
f(xn)

f ′(xn)
,

zn = wn −
f2(xn)

f2(xn)− 2f(xn)f(wn) + β1f2(wn)

f(wn)

f ′(xn)
,

xn+1 = zn −
1

1 + β2q2n

f(zn)

K − C(wn − zn)−D(wn − zn)2
,

where β1, β2 ∈ R, while qn = f(zn)/f(xn),

D =
f ′(xn)−H

(xn − wn)(xn − zn)
− H −K

(xn − zn)2
,

C =
H −K
xn − zn

−D(xn + wn − 2zn),

H =
f(xn)− f(wn)

xn − wn

and

K =
f(wn)− f(zn)

wn − zn
.

• Chun and Lee’s method [17] (CL):

wn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(wn)

f ′(xn)

1[
1− f(wn)

f(xn)

]2 ,
xn+1 = zn −

f(zn)

f ′(xn)
· 1

H2
n

,

where

Hn = 1−f(wn)

f(xn)
− f(zn)

2f(xn)
− f(zn)

2f(wn)
−1

2

(f2(wn)

f2(xn)
−f

3(wn)

f3(xn)

)
.

Numerical results displayed in the following tables have
been calculated for the values of real parameters suggested by
authors of cited papers, i.e. β = 1 for BWR; β1 = 0, β2 = 0
for TP; β1 = 5, β2 = −7 for LW; β1 = 0, β2 = 1, β3 = 0 for
CTV; β1 = 1, β2 = 1 for KFS.

Four test examples have been employed to illustrate the
numerical behavior of given methods.
Example 1. (Population growth problem) The test function has
a form

f1(x) = 1365− 1000ex − 300

x
(ex − 1), (14)



where the root is α ≈ 0.05504622. In fact, nonlinear function
(14) is a particular case derived from the law of the population
growth which is defined as a differential equation

dN(t)

dt
= x ·N(t) + η,

where x is the birth rate, N(t) is population at time, η is the
immigration rate (see [27] for more details).
Example 2. (Van der Waals equation of state) This equation
describes the behavior of the real gas with the respect to the
two parameters α1 and α2, specific for each gas. The problem
is to determine the volume V of the gas from the equation

PV 3 − (na2P + nRT )V 2 + α1n
2V − α1α2n

2 = 0

in terms of the remaining parameters. In [27] the researchers
set the values for n, P,R and T , and considered the following
function

f2(x) = x3 − 5.22x2 + 9.0825x− 5.2675,

with the desired simple root α = 1.72, and the multiple root
α = 1.75 which is out of interest for this research.
Example 3. The problem of minimum insurance premium
determination given by function

f3(x) = 2e−
√
x(
√
x+ 1)− 2e−

√
x+1(
√
1 + x+ 1)− e−1,

where the simple root is α ≈ 0.541920.
Example 4. The following standard nonlinear test function is
taken from [17],

f4(x) = x4 + sin
π

x2
− 5,

with the simple root α =
√
2.

Tables I-IV contain the numerical results for all presented
eighth-order methods. The results are organized in three
columns. The column named by ”it” shows the number of
iterations required to satisfy the stopping criterion

|xn+1 − xn|+ |f(xn)| < 10−200.

The next column |f(x3)| displays the absolute value of the
function evaluated after fourth iteration, i.e. after 12 func-
tion/derivative evaluations. The last column presents compu-
tational order of convergence (COC) given by

COC =
log |f(xn)/f(xn−1)|

log |f(xn−1)/f(xn−2)|
.

Table I. Numerical results for function f1(x), x0 = 0.1

method it |f(x3)| COC

BWR 4 7.247 · 10−821 8.0000
TP 4 2.300 · 10−781 8.0000
LW 4 5.089 · 10−853 8.0000
CTV 4 1.715 · 10−894 8.0000
KFS 4 1.677 · 10−827 8.0000
CL 4 1.015 · 10−808 8.0000
SA1 4 6.762 · 10−915 8.0000
SA2 4 8.462 · 10−800 8.0000
SA3 4 2.401 · 10−762 8.0000
New1, b = −0.5 4 1.227 · 10−959 8.0000
New2, b = −0.5 4 2.729 · 10−927 8.0000
New3, b = −0.5 4 1.792 · 10−990 8.0000
New1, b = −1.5 4 2.297 · 10−907 8.0000
New2, b = −1.5 4 8.801 · 10−779 8.0000
New3, b = −1.5 4 3.006 · 10−740 8.0000

Table II. Numerical results for function f2(x), x0 = 1.7

method it |f(x3)| COC

BWR 5 5.030 · 10−117 8.0000
TP 5 1.691 · 10−70 8.0000
LW 5 2.231 · 10−65 8.0000
CTV 5 1.630 · 10−101 8.0000
KFS 5 1.549 · 10−93 8.0000
CL 5 1.695 · 10−100 8.0000
SA1 5 1.776 · 10−190 8.0000
SA2 5 1.536 · 10−193 8.0000
SA3 5 9.357 · 10−190 8.0000
New1, b = 0.5 5 1.889 · 10−191 8.0000
New2, b = 0.5 5 1.466 · 10−197 8.0000
New3, b = 0.5 5 1.298 · 10−195 8.0000
New1, b = 1.5 5 1.692 · 10−193 8.0000
New2, b = 1.5 4 7.313 · 10−208 8.0002
New3, b = 1.5 4 4.406 · 10−213 8.0002

Table III. Numerical results for function f3(x), x0 = 0.25

method it |f(x3)| COC

BWR 4 1.186 · 10−325 8.0000
TP 4 2.179 · 10−329 8.0000
LW 4 4.506 · 10−374 8.0000
CTV 4 1.545 · 10−429 8.0000
KFS 4 6.283 · 10−361 8.0000
CL 4 7.165 · 10−380 8.0000
SA1 4 1.243 · 10−418 8.0000
SA2 4 6.089 · 10−392 8.0000
SA3 4 4.391 · 10−338 8.0000
New1, b = 0.5 4 2.066 · 10−429 8.0000
New2, b = 0.5 4 2.546 · 10−424 8.0000
New3, b = 0.5 4 4.776 · 10−437 8.0000
New1, b = 1.5 4 9.669 · 10−474 8.0000
New2, b = 1.5 4 5.576 · 10−356 8.0000
New3, b = 1.5 4 1.185 · 10−318 8.0000



Table IV. Numerical results for function f4(x), x0 = 1.2

method it |f(x3)| COC

BWR 4 1.969 · 10−346 8.0000
TP 4 2.111 · 10−353 8.0000
LW 4 6.321 · 10−302 8.0000
CTV 4 5.390 · 10−334 8.0000
KFS 4 1.645 · 10−396 8.0000
CL 4 9.304 · 10−372 8.0000
SA1 4 7.437 · 10−355 8.0000
SA2 4 2.268 · 10−360 8.0000
SA3 4 6.629 · 10−492 8.0000
New1, b = −0.5 4 7.518 · 10−350 8.0000
New2, b = −0.5 4 5.797 · 10−359 8.0000
New3, b = −0.5 4 1.482 · 10−493 8.0000
New1, b = −1.5 4 9.437 · 10−342 8.0000
New2, b = −1.5 4 4.149 · 10−358 8.0000
New3, b = −1.5 4 2.996 · 10−506 8.0000

All numerical experiments have been carried out by Math-
ematica 10 using SetPrecision function with 10000 significant
digits.

IV. CONCLUSION

The new proposed iterative family (5) is of optimal eighth-
order and satisfies the Kung-Traub conjecture. According to
the COC values displayed in Tables I-IV, the numerical results
clearly confirm theoretically derived eighth order as well. It
is easy to observe that SA family (3) is a special case of
family (5) for b = 0. By varying the values of parameter b,
the convergence of SA methods can be improved in the sense
that the sequence of approximations gets closer to the root
within the same number of iterations (see for example Table
II). On the other hand, in some cases for certain b values the
convergence can be slower.

Although the new family shows very competitive results
compared to other existing eighth-order methods, it cannot
be said that some method is superior than others in general.
However, choosing the best options for the value of parameter
b could be worth for further research.
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[23] R.Thukral, M. S.Petković, A family of three-point methods of optimal
order for solving nonlinear equations, J. Comput. Appl. Math. 233,
2278—2284, 2010.

[24] L. Liu, X.Wang, Eighth-order methods with high efficiency index for
solving nonlinear equations, Applied Mathematics and Computation 215,
3449—3454, 2010.

[25] A.Cordero, J.R.Torregrosa, M.P.Vassileva, Three-step iterative methods
with optimal eighth-order convergence, J. Comput. Appl. Math. 235,
3189—3194, 2011.

[26] Y.Khan, M. Fardi, K. Sayevand, A new general eighth-order family of
iterative methods for solving nonlinear equations, Appl. Math. Lett. 25,
2262—2266, 2012.

[27] R. Behl, A.S. Alshomrani, S.S. Motsa An optimal scheme for multiple
roots of nonlinear equations with eighth-order convergence, Journal of
Mathematical Chemistry, 1—16, 2018.


