F EasyChair Preprint
 № 9314

The Smallest Gap Between Primes

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

The Smallest Gap Between Primes

Frank Vega ${ }^{1 *}$
${ }^{1 *}$ Research Department, NataSquad, 10 rue de la Paix, Paris, 75002, France.

Corresponding author(s). E-mail(s): vega.frank@gmail.com;

Abstract

A prime gap is the difference between two successive prime numbers. A twin prime is a prime that has a prime gap of two. The twin prime conjecture states that there are infinitely many twin primes. In May 2013, the popular Yitang Zhang's paper was accepted by the journal Annals of Mathematics where it was announced that for some integer N that is less than 70 million, there are infinitely many pairs of primes that differ by N. A few months later, James Maynard gave a different proof of Yitang Zhang's theorem and showed that there are infinitely many prime gaps with size of at most 600 . A collaborative effort in the Polymath Project, led by Terence Tao, reduced to the lower bound 246 just using Zhang and Maynard results. In this note, using arithmetic operations, we prove that the twin prime conjecture is true.

Keywords: Twin prime conjecture, Prime numbers, Prime gap
MSC Classification: 11A41, 11A25

1 Introduction

Leonhard Euler studied the following value of the Riemann zeta function (1734).

Proposition 1 It is known that[1, (1) pp. 1070]:

$$
\zeta(2)=\prod_{k=1}^{\infty} \frac{p_{k}^{2}}{p_{k}^{2}-1}=\frac{\pi^{2}}{6}
$$

Twin prime conjecture

Fig. 1 Roots of $\mathrm{H}_{2}(x)$ [3]

Fig. 2 Roots of $H_{4}(x)$ [4]
where p_{k} is the k th prime number (We also use the notation p_{n} to denote the $n t h$ prime number).

Proposition 2 We know that if $x \geq 89693$, there is at least one prime p in the interval $x<p \leq\left(1+\frac{1}{\log ^{3} x}\right) \cdot x[2$, Proposition $5.4 p p$. 242].

We use the following function:

Definition 1 For all $x>1$ and $a \geq 0$, we define the function:

$$
H_{a}(x)=\log \left(\frac{x}{x-1}\right)-\frac{1}{x+a}+\log \left(\frac{x^{2}-\sqrt[\log (x)+1]{x}}{x^{2}}\right)
$$

We state the following Propositions:

Twin prime conjecture

Proposition 3 For a sufficiently large positive value x, we have $H_{2}(x)<0$. Certainly, $H_{2}(x)$ is negative for all $x \geq 60000$ since it is negative for $x=60000$, strictly decreasing for $x \geq 60000$ (because its derivative is lesser than 0 for $x \geq 60000$) and its greatest root is between 50000 and 60000 (See Figure 1).

Proposition 4 For a sufficiently large positive value x, we have $H_{4}(x)>0$. Certainly, $H_{4}(x)$ is positive for all $x \geq 1.5$ since it is positive for $x=1.5$ and its unique root is between 1.4 and 1.5 (See Figure 2).

The following property is based on natural logarithms:

Proposition 5 [5, pp. 1]. For $x>-1$:

$$
\log (1+x) \leq x
$$

Putting all together yields the proof of the main theorem.

Theorem 1 The twin prime conjecture is true.

2 Infinite Sum

Lemma 1

$$
\sum_{k=1}^{\infty}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right)=\log (\zeta(2)) .
$$

Proof We obtain that

$$
\begin{aligned}
\log (\zeta(2)) & =\log \left(\prod_{k=1}^{\infty} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right) \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{p_{k}^{2}}{\left(p_{k}^{2}-1\right)}\right)\right) \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{p_{k}^{2}}{\left(p_{k}-1\right) \cdot\left(p_{k}+1\right)}\right)\right) \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)+\log \left(\frac{p_{k}}{p_{k}+1}\right)\right) \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(\frac{p_{k}+1}{p_{k}}\right)\right) \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right)
\end{aligned}
$$

by Proposition 1.

Twin prime conjecture

3 Partial Sum

Lemma 2

$$
\sum_{p_{k} \leq x}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right)=\log \left(\prod_{p_{k} \leq x} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right)
$$

Proof We obtain that

$$
\begin{aligned}
\log \left(\prod_{p_{k} \leq x} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right) & =\sum_{p_{k} \leq x}\left(\log \left(\frac{p_{k}^{2}}{\left(p_{k}^{2}-1\right)}\right)\right) \\
& =\sum_{p_{k} \leq x}\left(\log \left(\frac{p_{k}^{2}}{\left(p_{k}-1\right) \cdot\left(p_{k}+1\right)}\right)\right) \\
& =\sum_{p_{k} \leq x}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)+\log \left(\frac{p_{k}}{p_{k}+1}\right)\right) \\
& =\sum_{p_{k} \leq x}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(\frac{p_{k}+1}{p_{k}}\right)\right) \\
& =\sum_{p_{k} \leq x}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right)
\end{aligned}
$$

by Proposition 1.

4 Main Insight

Lemma 3

$$
\left.\sum_{p_{k} \geq p_{n}}\left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right)=\log \left(\prod_{p_{k} \geq p_{n}} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right) .
$$

Proof We obtain that

$$
\begin{aligned}
& \left.\sum_{p_{k} \geq p_{n}}\left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right) \\
& =\sum_{k=1}^{\infty}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right)-\sum_{p_{k} \leq p_{n-1}}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right) \\
& =\log (\zeta(2))-\log \left(\prod_{p_{k} \leq p_{n-1}} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right) \\
& =\log \left(\prod_{p_{k} \geq p_{n}} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right)
\end{aligned}
$$

by Lemmas 1 and 2 .

Twin prime conjecture

5 Proof of Theorem 1

Proof Suppose that the twin prime conjecture is false. Then, there would exist a sufficiently large prime number p_{n} such that for all prime gaps starting from $p_{n}+2$, this implies that they are greater than or equal to 4 . In addition, we assume that $p_{n}+2$ is also prime. We know that

$$
H_{2}\left(p_{n}\right)+\sum_{p_{k}>p_{n}} H_{4}\left(p_{k}\right)>H_{2}\left(p_{n}\right)
$$

due to Proposition 4. That is equivalent to

$$
\sum_{p_{k} \geq p_{n}}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\frac{1}{p_{k+1}}\right)+\sum_{p_{k} \geq p_{n}} \log \left(\frac{p_{k}^{2}-\sqrt[\log \left(p_{k}\right)+1]{p_{k}}}{p_{k}^{2}}\right)>H_{2}\left(p_{n}\right)
$$

since $-\frac{1}{p_{k+1}} \geq-\frac{1}{p_{k}+4}$ and $-\frac{1}{p_{n+1}}=-\frac{1}{p_{n}+2}$ under our assumption. Moreover, we obtain that

$$
\sum_{p_{k} \geq p_{n}}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k+1}}\right)\right)+\sum_{p_{k} \geq p_{n}} \log \left(\frac{p_{k}^{2}-\sqrt[\log \left(p_{k}\right)+1]{p_{k}}}{p_{k}^{2}}\right)>H_{2}\left(p_{n}\right)
$$

since $-\log \left(1+\frac{1}{p_{k+1}}\right) \geq-\frac{1}{p_{k+1}}$ by Proposition 5. By Lemma 3, we deduce

$$
\log \left(1+\frac{1}{p_{n}}\right)+\log \left(\prod_{p_{k} \geq p_{n}} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right)+\sum_{p_{k} \geq p_{n}} \log \left(\frac{p_{k}^{2}-\sqrt[\log \left(p_{k}\right)+1]{p_{k}}}{p_{k}^{2}}\right)>H_{2}\left(p_{n}\right) .
$$

By Lemma 3, we know that

$$
\begin{aligned}
& \log \left(\prod_{p_{k} \geq p_{n}} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right)+\sum_{p_{k} \geq p_{n}} \log \left(\frac{p_{k}^{2}-\sqrt[\log \left(p_{k}\right)+1]{p_{k}}}{p_{k}^{2}}\right) \\
& =\sum_{p_{k} \geq p_{n}}\left(\frac{1}{p_{k}+2}-\log \left(1+\frac{1}{p_{k}}\right)\right)+\sum_{p_{k} \geq p_{n}} H_{2}\left(p_{k}\right) \\
& =\sum_{p_{k} \geq p_{n}}\left(\log \left(\frac{p_{k}}{p_{k}-1}\right)-\log \left(1+\frac{1}{p_{k}}\right)\right)+\sum_{p_{k} \geq p_{n}} \log \left(\frac{p_{k}^{2}-\sqrt[\log \left(p_{k}\right)+1]{p_{k}}}{p_{k}^{2}}\right) \\
& =\log \left(\prod_{p_{k} \geq p_{n}} \frac{p_{k}^{2}}{p_{k}^{2}-1}\right)+\sum_{p_{k} \geq p_{n}} \log \left(\frac{p_{k}^{2}-\sqrt[\log \left(p_{k}\right)+1]{p_{k}}}{p_{k}^{2}}\right)
\end{aligned}
$$

In this way, we have

$$
\log \left(1+\frac{1}{p_{n}}\right)+\sum_{p_{k} \geq p_{n}}\left(\frac{1}{p_{k}+2}-\log \left(1+\frac{1}{p_{k}}\right)\right)+\sum_{p_{k} \geq p_{n}} H_{2}\left(p_{k}\right)>H_{2}\left(p_{n}\right)
$$

which is

$$
\frac{1}{p_{n}+2}+\sum_{p_{k}>p_{n}}\left(\frac{1}{p_{k}+2}-\log \left(1+\frac{1}{p_{k}}\right)\right)+\sum_{p_{k}>p_{n}} H_{2}\left(p_{k}\right)>0 .
$$

That is equivalent to

$$
\frac{1}{p_{n}+2}+\sum_{p_{k}>p_{n}}\left(\frac{1}{p_{k}+2}-\log \left(1+\frac{1}{p_{k}}\right)\right)>0 .
$$

Twin prime conjecture

Indeed, we know that

$$
-\sum_{p_{k}>p_{n}} H_{2}\left(p_{k}\right)>0
$$

by Proposition 3. Moreover, we know that

$$
\frac{1}{p_{n}+2}+\frac{1}{p_{n}+4}>\sum_{p_{k}>p_{n}}\left(\log \left(1+\frac{1}{p_{k}}\right)-\frac{1}{p_{k+1}+2}\right)
$$

when $p_{n+1}=p_{n}+2$ under our assumption. However, we deduce that

$$
\sum_{p_{k}>p_{n}}\left(\log \left(1+\frac{1}{p_{k}}\right)-\frac{1}{p_{k+1}+2}\right) \geq \frac{2}{p_{n}+2}>\frac{2 \cdot p_{n}+6}{\left(p_{n}+2\right) \cdot\left(p_{n}+4\right)}
$$

where

$$
\frac{2}{p_{n}+2}=\frac{2}{p_{n+1}}=\sum_{k=1}^{\infty} \frac{1}{2^{k-1} \cdot\left(p_{n+1}\right)}
$$

which is

$$
\sum_{k \geq(n+1)}\left(\log \left(1+\frac{1}{p_{k}}\right)-\frac{1}{p_{k+1}+2}-\frac{1}{2^{k-(n+1)} \cdot p_{n+1}}\right) \geq 0
$$

since $p_{n+1}=p_{n}+2$ under our assumption. There exists always some $k>(n+1)$ such that

$$
2^{k-(n+1)} \gg\left(1+\frac{1}{\log ^{3} p_{k}}\right)^{u}
$$

for an arbitrary constant $u>1$, where \gg means "much greater than". For that reason,

$$
\sum_{k \geq(n+1)}\left(\log \left(1+\frac{1}{p_{k}}\right)-\frac{1}{p_{k+1}+2}-\frac{1}{2^{k-(n+1)} \cdot p_{n+1}}\right) \geq 0
$$

is trivially satisfied by Proposition 2 when $p_{n+1} \geq 2996863034895 \cdot 2^{1290000}+1[6]$. Hence, the inequality

$$
H_{2}\left(p_{n}\right)+\sum_{p_{k}>p_{n}} H_{4}\left(p_{k}\right)>H_{2}\left(p_{n}\right)
$$

would not hold by transitivity. For that reason, we obtain a contradiction under the supposition that the twin prime conjecture is false. By reductio ad absurdum, we prove that the twin prime conjecture is true.

6 Conclusions

Until today, it has not been found a straightforward application to this problem. Of course, this is close related to prime numbers and prime numbers have been used for decades in the security of computer software including Artificial Intelligence solutions. However, the author used a computational and artificial intelligence as a tool for making his mathematical proof. This is a website called Wolfram Alpha and it has been developed by Wolfram Research for years. In this way, this proof reveals the capabilities and potential of such mathematical tool and it is an evidence of the promissory relation between pure and applied mathematics with the Artificial Intelligence.

Twin prime conjecture

References

[1] R. Ayoub, Euler and the zeta function. The American Mathematical Monthly 81(10), 1067-1086 (1974). https://doi.org/10.2307/2319041
[2] P. Dusart, Explicit estimates of some functions over primes. The Ramanujan Journal 45(1), 227-251 (2018). https://doi.org/10.1007/ s11139-016-9839-4
[3] Equation Solver - Wolfram Alpha. Roots for the function H in the value of $a=2$. https://www.wolframalpha.com/input?i2d=true\&i= $\log \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{Divide} \% 5 \mathrm{BX} \% 2 \mathrm{C} \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{X}+-+1 \% 5 \mathrm{C} \% 2841 \%$ $29 \% 5 \mathrm{D} \% 5 \mathrm{C} \% 2841 \% 29+-+$ Divide $\% 5 \mathrm{~B} 1 \% 2 \mathrm{C} \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{X}+\% 2 \mathrm{~B}+$ $2 \% 5 \mathrm{C} \% 2841 \% 29 \% 5 \mathrm{D}+\% 2 \mathrm{~B}+\log \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{Divide} \% 5 \mathrm{~B} \% 5 \mathrm{C} \% 2840 \%$ 29Power\%5BX\%2C2\%5D+-+Power\%5BX\%2C\%5C\%2840\%29Divide\% $5 \mathrm{~B} 1 \% 2 \mathrm{C} \% 5 \mathrm{C} \% 2840 \% 29 \log \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{X} \% 5 \mathrm{C} \% 2841 \% 29+\% 2 \mathrm{~B}+1 \%$ $5 \mathrm{C} \% 2841 \% 29 \% 5 \mathrm{D} \% 5 \mathrm{C} \% 2841 \% 29 \% 5 \mathrm{D} \% 5 \mathrm{C} \% 2841 \% 29 \% 2 \mathrm{CPower} \% 5 \mathrm{BX} \%$ 2C2\%5D $\% 5 \mathrm{D} \% 5 \mathrm{C} \% 2841 \% 29 \% 3 \mathrm{D} 0$. Accessed 15 November 2022
[4] Equation Solver - Wolfram Alpha. Roots for the function H in the value of $a=4$. https://www.wolframalpha.com/input?i2d=true\&i= $\log \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{Divide} \% 5 \mathrm{BX} \% 2 \mathrm{C} \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{X}+-+1 \% 5 \mathrm{C} \% 2841 \%$ $29 \% 5 \mathrm{D} \% 5 \mathrm{C} \% 2841 \% 29+-+$ Divide $\% 5 \mathrm{~B} 1 \% 2 \mathrm{C} \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{X}+\% 2 \mathrm{~B}+$ $4 \% 5 \mathrm{C} \% 2841 \% 29 \% 5 \mathrm{D}+\% 2 \mathrm{~B}+\log \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{Divide} \% 5 \mathrm{~B} \% 5 \mathrm{C} \% 2840 \%$ 29Power\%5BX\%2C2\%5D+-+Power\%5BX\%2C\%5C\%2840\%29Divide\% $5 \mathrm{~B} 1 \% 2 \mathrm{C} \% 5 \mathrm{C} \% 2840 \% 29 \log \% 5 \mathrm{C} \% 2840 \% 29 \mathrm{X} \% 5 \mathrm{C} \% 2841 \% 29+\% 2 \mathrm{~B}+1 \%$ $5 \mathrm{C} \% 2841 \% 29 \% 5 \mathrm{D} \% 5 \mathrm{C} \% 2841 \% 29 \% 5 \mathrm{D} \% 5 \mathrm{C} \% 2841 \% 29 \% 2 \mathrm{CPower} \% 5 \mathrm{BX} \%$ 2C2\%5D\%5D\%5C\%2841\%29\%3D0. Accessed 15 November 2022
[5] L. Kozma. Useful Inequalities. http://www.lkozma.net/inequalities_cheat_ sheet/ineq.pdf (2022). Accessed 15 November 2022
[6] C.K. Caldwell. The Prime Database: $2996863034895 \cdot 2^{1290000}-1$. https: //primes.utm.edu/primes/page.php?id=122213 (2016). Accessed 28 June 2023

