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Abstract—In the past few decades, robot-assisted minimally 
invasive surgery has made a significant impact in operating 
rooms due to its high dexterity, small tool size, and impact on 
the adoption of minimally invasive techniques. Medical robotics 
endeavors at numerous academic institutions and leading 
surgical robot companies have contributed to the development 
of intelligence and different levels of autonomy in surgical 
robots in recent years. To accelerate interaction within the 
research community and prevent repeated development, we 
propose the Collaborative Robotics Toolkit (CRTK), a common 
API for the RAVEN-II and da Vinci Research Kit (dVRK), 
which are both open surgical robot platforms installed in over 
40 institutions globally. Other robots and devices have been 
added to CRTK, including industrial robots and simulations of 
robotic systems. In areas such as semiautonomous teleoperation 
and medical robotics, this API provides a community software 
infrastructure that can be used for research and education. The 
purpose of this paper is to present the concepts, design details, 
and integration of CRTK with physical robot systems and 
simulation platforms.   

Keywords—dVRK, CRTK, AMBF, MTMs, PSM  

I. INTRODUCTION (BACKGROUND) 
Telerobotics and cooperatively-controlled robots both 

have compelling applications in surgery. In telerobotic 
systems, one or more robots are controlled by a master console 
by the surgeon. These systems can (1) For minimally invasive 
surgery, provide high dexterity through small incisions.(2) 
When acting on a patient while they are exposed to ionizing 
radiation, such as when performing computed tomography 
(CT) or x-ray imaging,(3) An MRI scanner's bore, for 
example, enables it to fit into confined spaces (4) Remote 
operations are performed by expert surgeons. As a result of 
cooperatively-controlled robots, the surgeon can share control 
of the surgical instrument with the robot. An embedded force 
sensor is usually used to measure the surgeon's intent to guide 
the surgical instrument. While many search robots and 
commercial surgery systems have been put in place to provide 
one or more of the greater than the advantages, to date, the da 
Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, 
CA) (1) has achieved its greatest success with more than 5,000 
robotic systems installed in hospitals worldwide and with 

more than 6 million surgical procedures executed. The da 
Vinci, however, only provides direct teleoperation , when a 
human surgeon individually controls the action of the robots 
on the patient side, even if the semi-independent teleoperation, 
in particular prudential supervision, shared supervision, and 
other co-robotic methods, has been active during decades. 
Furthermore, the da Vinci does not currently support 
teleoperation across large distances, though that capability 
was demonstrated in 2001 with a competing system(2) In the 
field of research, however, there is a trend towards the 
integration of semi-autonomous staff trained via device or 
Learning enhancement (ML/RL) in the surgical workflow. 
Some notable research in this field include autonomic 
algorithms for soft tissue suture.(3) a computerized approach 
to sinus surgery using computerized navigational 
techniques.(4) characterizing and automating soft tissue 
suture with a curved needle guide.(5) automation 
reduction/reduction of sub-tasks while utilizing 
apprenticeship ascertaining.(6) Additionally,(7) offers a 
holistic approach simplify the positioning of the handler 
before surgical interplay,(8) has demonstrated surgical 
simulation remote manipulator designed for cardiac 
surgery.(9) An infrastructure trainer is introduced with 
controllable domination and aggressiveness factors for the 
automation of repetitive surgical tasks. Finally, a common 
infrastructure for the training of apprenticeship agents through 
the decomposition of sub-task movements is developed 
in.(10) Naturally, these research systems cannot be applied 
directly to an actual surgical procedure, but rather rely on 
model configurations with custom robots or commercially 
available industrial robots. Researchers often have to make the 
tough decision to:(1) build a realistic experimental robot 
system (for example a custom robot) that matches the 
complexity and variety of tasks of the intended application, 
but is expensive and one of a kind or Choose a "tabletop" 
platform (e.g. an industrial robot) with less complexity and 
abundance of tasks, which is easier to develop but reduces the 
impact of research. . A few years ago it became clear that one 
of the obstacles to surgical robotics research was the lack of a 
robust and realistic common research platform. This led to the 
development and community adoption of two open research 
platforms: : the Raven-II and the da Vinci Research Kit 
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(dVRK), described in the following sections. Currently these 
two robotic surgical platforms together have an installed base 
of about 50 systems in over 40 research centers (several 
laboratories use both systems) and several of the above 
publications were developed using one of these systems [5], 
[6], [9], [10]. In addition, simulations of the da Vinci robot 
have been developed, including commercial products used for 
training surgeons. In the field of research, da Vinci 
simulations include [11] and [12], the former based on Gazebo 
and the latter on V-REP. These typically simulate the Patient 
Side Manipulator (PSM) and use a human input device such 
as a mouse. B. da Vinci Master Tool Manipulators (MTMs) or 
haptic devices. Below we also summarize the recently 
developed Asynchronous MultiBody Framework (AMBF) 
[13] that supports the simulation of Raven II, dVRK and other 
robots. Simulators of the da Vinci robot have also been 
created, including products that are sold to train surgeons.Da 
Vinci simulations are found in [11] and [12], the former based 
on V-REP and the latter on Gazebo.The Patient Side 
Manipulator (PSM) is typically simulated by these, which 
make use of a mouse or other human input device.B. haptic 
devices or da Vinci Master Tool Manipulators (MTMs).The 
Asynchronous MultiBody Framework (AMBF) [13], which 
enables the simulation of Raven II, dVRK, and other robots, 
is described in detail below. 

                          

Fig 1. The Raven-II surgical robot             Fig 2. The da Vinci Research Kit  

1) Raven II:The Raven-II (Fig.1) was developed in 2012 by 
the University of Washington and the University of 
California, Santa Cruz, and initially distributed to seven 
institutions as an-improvement to the previous Raven surgical 
robot.It was made to provide the necessary forces and range 
of motion in a small package with cutting-edge motion 
control.The Raven-II system's portability and durability have 
been demonstrated through experiments, including a 
simulated telerobotic surgery in a tent at a remote location 
north of Simi Valley, California; a gas-powered generator that 
powers the wireless teleoperation;also, shipping also, re-
gathering the robot at the Aquarius undersea exploration 
station at a profundity of 19 meters off the bank of Key Largo 
(as a feature of NASA's NEEMO program).At the end of 
2013, production of Raven II systems was outsourced to a new 
company called Applied Dexterity Inc., which has since 
installed a number of other systems.  

2) dVRK: da Vinci Research KitAdditionally in 2012, 
Worcester Polytechnic Institute (WPI) and Johns Hopkins 
University (JHU) released open source software and 
mechatronics to enable researchers to construct dVRK 
platforms (Fig.2) [16] and [17] are examples taken from 
defunct da Vinci Systems of the initial generation .In 
particular, researchers could connect the cables that connect 
the da Vinci Master Tool Manipulators (MTMs), Patient Side 
Manipulators (PSMs), and Endoscopic Camera Manipulators 
(ECMs) to an open source controller that uses      bridge linear 
amplifiers to drive the motors and field programmable gate 
arrays (FPGAs) to process the sensor feedback and control 
signals that are associated with them. These devices are 

known as da Vinci manipulators . Through the use of IEEE-
1394 (FireWire), the FPGAs exchange all data with a control 
PC, resulting in closed-loop control rates exceeding 1 kHz. 

3) Simulator for the Asynchronous Multi-Body Framework 
(AMBF):We recently proposed a simulation framework based 
on a front-end description format known as Asynchronous 
MultiBody Framework (AMBF Format) and an associated 
robust realtime dynamic simulator to address the requirements 
for a highly flexible simulation framework in terms of robot 
definitions, support for a wide variety of disparate input 
devices, and interactions with the environment [13].The 
AMBF Format permits:improved readability and editability 
for humans, distributed definition of the simulation elements, 
independent constraint handling, controllability of the way 
forces are applied to the bodies, communicability of all 
aspects of each body that are independent of one another, and 
dynamic loading with the capability to add bodies and alter 
constraints at run-timeBased on this AMBF format, the 
AMBF simulator offers soft body support, flexible 
visualization options, asynchronous support for a wide range 
of input devices used simultaneously without affecting 
performance, and dynamic body simulation.[18] describes a 
method for modeling the dVRK's dynamic model parameters, 
and [11] describes an example of using this framework to 
implement closed-loop kinematic chain mechanisms, which 
are difficult in many simulation environments.Section III-C 
provides additional information about how AMBF has been 
applied to the dVRK and Raven II. 

 



 

 

 

Fig. 3. Concept for Common API to Raven II, dVRK and other 
systems, and Surgical Tool Class to facilitate sharing of surgical 
instruments, especially those actuated by the four disks introduced by 
the da Vinci robot. 

 

II. MOTIVATION 

A. Even though the Raven II and the dVRK share a research 
platform, it became clear that the "one design" advocated by 
[19] would be even better.Because Raven II and dVRK are 
based on different hardware designs, it would appear 
impossible to develop a common software and hardware 
platform.However, since many Raven II robots drive the four-
degree-of-freedom da Vinci instruments, the part of the robot 
that interacts with the environment is frequently the same for 
both systems.As depicted in Figure, this served as the initial 
impetus for the development of a common surgical tool class 
and software interface for Raven II and dVRK.3.However, it 
soon became clear that researchers in surgical robotics could 
use a similar software interface for other robots, so the goal 
was expanded to include defining a common "language" for 
component-based robotics software.One particular goal was 
to make it simple to replicate research on other robot 
platforms, like the ones mentioned earlier. We take into 
account two aspects of this universal language:1) the message 
content and the communication infrastructure that carries 
messages between the components.With abstract 
(implementation agnostic) definitions of the message content, 
our work focuses on the second aspect, presuming that one or 
more existing middleware packages can meet the first 
requirement. The widely used robotics operating system 
Robot Operating System (ROS) [20] is an obvious choice for 
the communication infrastructure.However, despite the fact 
that ROS provides common message types and standard 
middleware (such as topics and services), there is no 
welldocumented consensus standard for how these messages 
and interfaces should be used.Beginning users are able to 
quickly become proficient in ROS-based applications due to 
the low barrier to entry provided by ROS topics and the ROS 
communication structure as a whole. ROS is now regarded as 
the "community standard" middleware due to its widespread 
adoption and lack of enforcement of a messaging payload 
standard.However, the absence of a payload standard leads to 
the creation of redundant "wrapper" or "adapter" nodes for 
connecting ROS applications that have been independently 
developed.This was discovered at an early stage, and efforts 
were made to create some unofficial, but broadly accepted, 
payloads for particular applications.These messaging payload 
specifications have been widely adopted by the community, 
particularly when utilized by well-known ROS open source 
packages.However, despite their usefulness, these standards 
do not take into account the complexity of modern robots' 
hierarchical control structure. 

III. . PROJECT OUTLINE AND SOFTWARE 
ARCHITECTURE 

A. Project Outline The Collaborative Robotics Toolkit 
(CRTK) is a community-based software infrastructure made 

for research and education in cutting-edge fields like semi-
autonomous teleoperation and medical robotics.The project 
development process consists of two steps:Technical 
Implementation and Community ParticipationCommunity 
engagement for medical robotics communities worldwide 
includes both in-person and online discussion forums.The 
technical implementation defines the CRTK structure and 
hierarchy based on user feedback and takes into account the 
community's comments and suggestions. 

1) Community Participation:A major objective of the project 
is to involve the global community of software developers and 
researchers in medical robotics.We held workshops on 
"Shared Platforms for Medical Robotics Research," 
"Supervised Autonomy in Surgical Robotics," and "Open 
Platforms for Medical Robotics Research" at IROS 2017, 
"ISMR 2019," and "CRTK" and "Open Platforms for Medical 
Robotics Research" tutorials at IROS 2018. Joint editing of 
collaborative documents defining a set of use cases, naming 
conventions, and functionalities was the outcome of these 
workshops and tutorials.Some of the examples described in 
Section III were demonstrated during hands-on 
demonstrations, and Raven-II and dVRK robots were 
physically present at some of the events. 

2) Technical Implementation: The authors gathered 
community ideas and defined use cases (Section II-B) through 
these community workshops and events, which they then used 
to define and modify the CRTK infrastructure.Weekly 
teleconferences were held by the authors, including 
developers of Raven-II and dVRK, to ensure that the ROS 
message payloads, such as frames, units, the API, and 
namespace usage, were consistently implemented across both 
robotic platforms.Python and C++ were used to implement 
example tests and interface scripts.Implementation status and 
solutions to devicespecific technical issues were discussed 
during these weekly meetings. 

B. Use Cases The medical robotics research use cases we 
identified during our collaborative design process will serve 
as the foundation for the API's development.The use cases 
were divided into five themes by the authors. 

1) Working remotely:Allow force information to be 
incorporated through bilateral teleoperation or force reflection 
and support teleoperation across various communication 
channels with various master and slave devices. 2) Motion by 
Oneself:interfaces that let researchers use Cartesian and joint 
space autonomous robot motion planners. 3) Custom Control 
and Kinematics:Allow researchers to implement advanced 
controllers that simultaneously solve kinematics and control, 
such as constrained optimization, for applications like 
optimizing kinematic redundancy or enforcing virtual 
fixtures. 4) Compliant or cooperative control:Provide 
capabilities for custom cooperative or compliant control, such 
as by attaching a force sensor to the wrist of the robot and 
driving it with measured forces. 5) Individual 
instruments:Facilitate the integration of custom instruments 
that provide capabilities like increased dexterity or additional 
sensing with the RavenII or dVRK for researchers. 

  

A. SOFTWARE ARCHITECTURE 
Standard conventions for the flow of command and 

feedback messages within a robotic system are the objective 
of CRTK.We believe that each message has a unique name 



 

 

and a payload attached to it.The payload is specified in a 
message description file (msg file, for example) in ROS, and 
the name is related to the name of the topic or service.ROS 
provides tools for parsing message files and creating software 
to convert messages to and from the target programming 
language's (C or Python) data types.However, other 
middleware, such as OpenIGTLink [22], could be utilized 
because CRTK is not restricted to ROS. 

These two interfaces—the Robot Motion Interface and the 
Robot State Interface— were the primary focus of the initial 
development of CRTK. 

1) Interface for Robot Movement:A robot's ability to move 
is arguably its most important feature, making it an obvious 
target for any standardization efforts.High-level motion 
primitives were traditionally used to program industrial 
robots, such as moving in a straight line to a desired 
pose.Medical robots that are teleoperated or cooperatively 
controlled (as noted in the use cases in Section II-B) also 
require a low-level motion interface, despite the fact that 
highlevel motions are relevant to medical robotics.A 
teleoperated robot, for instance, might require a continuous 
stream of position or velocity commands from the master 
manipulator to the slave manipulator.In a similar vein, some 
forms of cooperative control make use of a force sensor that is 
attached to the wrist of the robot and converts the forces it 
detects into a stream of commands for the desired velocity 
(called admittance control).The rate of command streaming 
must also be taken into account, as it may affect the slave 
robot's assumptions regarding motion smoothness and 
interpolation. As a result, as depicted in Figure, we define 
three levels of motion commands in CRTK.4.In a nutshell, the 
servo level is designed for low-level, high-rate robot 
control.This includes numerous use cases for cooperative 
control and teleoperation. In most cases, the robot should 
respond to the servo command as quickly as possible, 
preferably after performing some safety checks.Similar to the 
interpolate level, the robot should perform a straightforward 
interpolation to ensure smooth motion because the rate of 
setpoints may be slow or unreliable. Last but not least, the 
move level is for routine, high-level motion commands like 
moving into a certain pose.In this instance, the robot ought to 
have the capability of planning its trajectory.Table I's naming 
convention for CRTK motion commands must be followed, 
indicating whether the motion is in Cartesian or joint space 
and which motion parameter is being controlled (position, 
velocity, or force, for example). Additionally, the robot's 
motion-related information is depicted in Figure 4.It is 
possible to inquire about the current setpoint as well as the 
ultimate objective of the current motion in addition to the 
measured (sensor) feedback. 

 
Fig. 4. CRTK motion commands: high-level move commands, mid-level 
interpolate commands, and low-level servo commands, which move robots in 
joint or Cartesian space based on various desired quantities, as defined in 

Table I. The arrows in the diagram represent data flow. Three types of inquiry 
are supported: measured, setpoint, and goal. 

Keep in mind that the goal will be the same as the setpoint in 
the case of a low-level servo motion. It is vital to take note of 
that robots are not expected to support a wide range of 
movement orders in any case, on the off chance that an order 
is executed, it should follow the naming show in Table I. 
Likewise, it should likewise utilize the recommended payload 
(message type).The payloads for those commands are 
documented on the project website because we initially 
focused on the servo interface [23].The payloads for the move 
and interpolate commands are currently being defined by us. 
An interesting observation is that the higher levels could be 
implemented by generic software modules that interact with 
that level, so a standard servo interface might be sufficient.In 
point of fact, having only the joint space servo commands 
might be sufficient.This is comparable to ROS's strategy, 
which typically involves joint interactions with robots. 
However, the fact that it disregards any existing high-level 
implementations is the approach's drawback.For instance, all 
industrial robots offer the same move command in joint space 
and Cartesian space.Researchers can "wrap" these vendor-
supplied capabilities, which may have been optimized for the 
particular robot, according to the CRTK naming convention 
and prescribed message type using the CRTK approach.In 
situations where the high-level functionality may not exist 
(such as custom robots) or when the wrapped vendor-supplied 
solution is deemed inadequate, a software-based solution can 
still be utilized. 

 

2) The Robot State Interface:Even though most, if not all, 
robot systems have operating states, it is impossible to try to 
create a state diagram that is the same for all of them.As a 
result, our primary focus is on creating a high-level 
"metastate" diagram that, as depicted in Figure 5, provides a 
summary of the operating states and the commands necessary 
to move between them. It's possible that a robot's various 
internal states correspond to these meta-states. Additionally, 
we define two operating modes that can be applied to any one 
of the meta-states. 

 



 

 

For example,the is_homed working mode shows whether the 
robot has been homed and applies to all of the meta-states.The 
is_busy operating mode, on the other hand, only applies to the 
is_enabled meta-state and indicates that the robot is currently 
executing a motion command. 

B. Client APIs 
On Raven-II, dVRK, the AMBF simulator, and other robots 
and devices in our laboratories, the authors implemented the 
lowest-level (servo) CRTK interface in 2018–19.Example 

interfacing scripts, also known as the Client APIs, are 
provided for users to modify or test on their robots in order 

to lessen the learning curve for new users. 
• ROS Client API for C++:The authors created the crtk-

cpp repository [24] to demonstrate how to use the 
CRTK interface. This repository includes (a) a library, 
(b) examples, (c) utilities, and (d) functionality 
tests.For improved readability and code compression, 
the rest of the package makes use of the library's 
fundamental CRTK API robot state and motion helper 
functions.The two types of C++ client APIs are utilities 
and examples.Section II-E will provide a more in-
depth description of Client Test Scripts. Software 
packages called utilities are intended to be useful in a 
variety of robot control scenarios.As part of their 
research applications that enable robots to demonstrate 
CRTK functionalities, the authors envision community 
users directly downloading and utilizing the utilities 
(Table II), which are likely to be modified to meet 
future user requirements. 

• ROS Client API for Python:The provision of a CRTK 
API that enables users to communicate with a ROS 
CRTK-compliant robot is the primary objective of the 
Python client API.The rospy package can be used 
directly in Python, but it can be difficult to learn.The 
ROS publishers and subscribers are hidden by the 
Python client API, the payloads are converted to more 
convenient data types like PyKDL frames and Numpy 
vectors and matrices, and blocking commands (for 
state changes and move commands) are implemented 
by using Python thread events. 

• The Python client module provides methods to 
instantiate only portions of the CRTK standard 
because CRTK devices may implement different 
subsets of the CRTK specifications and the application 
may only require some of the CRTK 
features.Add_operating_state() and 
add_measured_cp(), for instance, would be used to 
only monitor a device's operating state and Cartesian 
position: 

•  
• The user can later develop a customized Python client 

instance and use the CRTK feature measured_cp(): 

•  
• Additionally, there are methods for waiting for CRTK 

state events in the Python client API.With 
wait_while_busy, for instance, the client can wait 
while the device is busy executing a move 
command.Examples and the most recent version can 
be found at [25]. 

C. Client Test Scripts 
To demonstrate that a robot system correctly supports the 

API, we developed a set of standard client test scripts and 
written descriptions of expected robot behavior in parallel 
with the design of the CRTK API (Table III).Each test is 
performed on a for each arm premise.When the test is run, the 
robot namespace is sent as an input;ROS parameters are then 
loaded with robot-specific information like joint types, joint 
numbers, and home poses.The authors envision that all 
CRTK-compliant robots will be able to use the same test 
scripts to verify compliance with the CRTK API. 

.EXAMPLES 

 
 

1. Teleoperation- In order to enable teleoperation of a       
Raven-II at the University of Washington in Seattle, 
CRTK servo_cr and robot state transitions were 
successfully implemented during the hands-on 
tutorial session at IROS 2018 in Madrid. At a rate of 
1000 Hz, ROS topics are used by the Raven-II robot 
to check for new CRTK commands.As shown in 
Figure,6, Raven-II automatically maps the desired 
CRTK states to the internal Raven-II states upon 
receiving a state transition command and proceeds 
with the state change.Raven-II responds as follows 
when a servo_cr CRTK motion command is 
received: 

1) Determine whether the incremental Cartesian 
command servo_cr falls within a predetermined 
safety threshold for step sizes. If true, proceed, and if 
not, disregard the command. 2) Change the units and 
spatial transformation of the reference coordinates 
from the CRTK frame to the Raven-II base frame to 
transform servo_cr into raven_cr. 3) Attach the 
raven_cr command to the raven_cp_d command for 
the desired Raven-II Cartesian pose. 4) If the desired 
Raven-II pose differs from the current Raven-II pose 
by more than a safety threshold, cap raven_cp_d. 5) 
Give the motion command a shot.  

Identify applicable funding agency here. If none, delete this text box. 



 

 

Servo_cp and the Python client interface were used 
to demonstrate the CRTK-based teleoperation at the 
ISMR 2019 workshop in Atlanta, where a Phantom 
Omni was used to teleoperate a dVRK system at 
Johns Hopkins University in Baltimore, Maryland.A 
Novint Falcon was used as the slave arm to 
demonstrate the same code. 

 

2. Image-Guided Surgery -The CRTK API aims to 
make it simple to translate its commands to various 
surgical robot systems with different software 
architectures.Image-guided robots belong to a 
different category than teleoperated and 
cooperatively controlled surgical robots.These 
robots are frequently used to percutaneously or 
stereotactically place instruments like needles for 
therapy and biopsy, instruments for ablation, and 
electrodes.Medical imaging, such as MRI, 
ultrasound, or CT, is typically used intraoperatively 
or registered to an intraoperative tracking system to 
direct the procedure in this scenario. CRTK 
command structures were implemented on the WPI 
NeuroRobot system in order to demonstrate the 
capability of the proposed framework for this kind of 
robot [26].This seven-degree-of-freedom MRI-
compatible stereotactic surgical robot is used for 
interstitial needle-based therapeutic ultrasound for 
the ablation of brain tumors. Its use case is typical of 
the kind of robot in which one or more targets and 
optionally an associated trajectory to reach them are 
defined in medical imaging and the robot is intended 
to follow that trajectory to align and insert the 
instrument. Often, real-time imaging is used to 
update the trajectory on the fly.A modular MRI-
compatible robot controller that is used to control a 
number of surgical robots and has applications in 
prostate cancer [27] and neurosurgery [28] is in 
charge of the NeuroRobot system. This control 
system is a self-contained centralized controller that 
is housed in the MRI scanner room. It is connected 
to a robot that is housed with the patient on the 
scanner bed in the scanner bore.Onboard, a National 
Instruments sbRIO 9561 module runs a real-time 
Linux operating system. This system communicates 
with external devices via a fiberoptic Ethernet 
network connection with surgical navigation 
software, such as 3D Slicer [29]. This 
implementation of CRTK is directly translatable to a 
wide range of devices that also use the Open 
Network Interface for Image-Guided Therapy 
(OpenIGTLink) communication interface, which 
provides a standardized mechanism for 

communication among computers and devices in 
operating rooms for a wide variety of image-guided 
therapy (IGT) applications [22]. This image-guided 
surgery robot controller makes use of the Open 
Network Interface for Image-Guided Therapy 
(OpenIGTLink). The NeuroRobot controller uses the 
C++ OpenIGTLink library to communicate with 
other systems in both directions.The OpenIGTLink 
interface's packet naming convention was changed to 
use CRTK notation.The NeuroRobot can now 
receive a desired Cartesian setpoint with the 
servo_cp command and a desired joint setpoint with 
the servo_jp command thanks to this update. The 
CRTK-defined commands measured_cp, 
measured_jp, measured_jv, desired_cp, and 
desired_jp enable the NeuroRobot to also transmit 
internal robot parameters.The ROS-OpenIGTLink 
bridge is compatible with this transmit and receive 
implementation, making ROS-based control simple. 

3.  AMBF simulator example Using a plugin-based 
interface for haptic interaction, the physical dVRK 
MTMs are incorporated into the dynamic simulation 
by the AMBF Simulator [13].The plugin, which goes 
by the name dVRK ARM, can be found at 
"https://github.com/WPI 
AIM/ambf/tree/master/ambf ros modules/dvrk arm." 
Class methods that are modeled after the CRTK 
specification are provided by this plugin, which 
makes use of the ROS messaging interface that is 
made available by the dVRK software (Figure 
7).Servo_jp,servo_jf,servo_cp, servo_cf, 
measured_jp, measured_jv, measured_cp, 
measured_cf, move_jp, and move_cp are just a few 
of the functions that it supports. The use of the 
CRTK-proposed hierarchical controller structure 
specification made the plugin's design and 
implementation simpler because it satisfied the 
plugin's requirements for controlling and sensing a 
simulated environment, which included a variety of 
control modes and different types of feedback data. 
A controller for a simulated Raven-II was 
implemented in AMBF, demonstrating yet another 
example of CRTK.Yun-Hsuan Su wrote the code, 
which can be found at [30].Raven-II kinematics 
calculation and support for a variety of control 
modes, such as homing, sinusoidal motions, and 
virtual 3-dimensional cube tracing, are included in 
this code and are also available in the actual Raven-
II system.Simply pressing one of the preset keyboard 
shortcuts will select one of these modes. 

 



 

 

 

IV.  CONCLUSION 
The Collaborative Robotics Toolkit (CRTK), a common robot 
command and feedback interface suitable for complex 
teleoperation and cooperative control tasks at various control 
levels, is the focus of this work.The AMBF simulator and the 
Raven-II and dVRK software have been updated to support 
CRTK.Download a set of sample client API and test codes at 
[31]. In the past few years, we have also held workshops and 
tutorials at a number of international robotics conferences to 
introduce CRTK to the community, collect user feedback, and 
encourage community adoption.In the meantime, you can find 
the user guide, additional documentation, and design details at 
[23].We hope to continue expanding the user base and making 
the CRTK infrastructure more userfriendly in future projects. 
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