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Abstract—The effectiveness of neural networks in handling
visual perturbations are frequently assessed using abstract trans-
forms, such as affine transformations. However, these trans-
forms may forfeit precision and be computationally expensive
(time and memory consuming). We suggest in this article a
novel approach called block-wise noising to overcome these
limitations. Block-wise noising simulates real-world situations
in which particular portions of an image are disrupted by
inserting non-zero noise symbols only inside a given section of the
image. Using this method, it is possible to assess neural networks
resilience to these disturbances while preserving scalability and
accuracy. The experimental results demonstrate that the present
block-wise noising achieves a 50% speed improvement compared
to the usual affine forms on specific trained neural networks.
Additionally, it can be especially helpful for applications like
computer vision, where real-world images may be susceptible to
different forms of disturbance.

Index Terms—Scalability, Optimisation, Interpretation abstract,
artificial intelligence.

I. INTRODUCTION

Neural networks [1, 2] are increasingly being employed
in mission-critical systems [3, 4] such as self-driving cars,
airplanes, air traffic control systems, health monitoring systems
and many more. These networks are frequently used to make
choice decisions in real time, such as object recognition,
trajectory prediction, anomaly detection, etc. The application
of neural networks in critical systems, on the other hand,
raises substantial safety challenges. Indeed, these networks
are frequently built using training data that are biased or
incomplete. Furthermore, networks can be vulnerable to ad-
versarial attacks [5]. As a result, neural network validation
and safety verification in mission-critical systems are crucial.
To guarantee that neural networks perform correctly under
all possible scenarios, formal verification approaches such as
abstract interpretation [6, 7], Satisfiability Modulo Theories
(SMT) [8, 9] and property testing [10] are frequently used.

Complex tasks require deep neural network models with a
large number of parameters that have to be trained. For exam-
ple, Resnet-50 [11] requires 25.5 million parameters, AlexNet
[12] 61 million parameters, and VGG-16 [13] 138 parameters
for training. Verifying these neural networks using abstract
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interpretation, such as affine forms, presents a challenge of
balancing scalability and precision [14].

Incorporating affine forms in the verification of neural
networks becomes computationally intensive process that may
take several days or even weeks to complete. This is due to the
necessity of updating the model parameters by adding noise
symbols for each pixel of the input. For instance, VGG-16 [13]
takes an input of size (224×224), so we add (224×224) noise
symbols in the first input layers of the model. As the neural
networks grow in size and the available datasets increase, the
number of noise symbols grows as well, then the running
neural network becomes more complex and computationally
intensive.

To adress this issue, we propose in this article a new
approach called block-wise noising, which consists of adding
non-zero noise symbols only within a defined region of an
image (see Figure 8). Intuitively, we divided our input into
n blocks. Then we add non-zero noise symbols to only one
region of each block, while leaving all other regions with zero
noise symbols. We repeat this technique for all blocks of our
input. When the computation is complete, we notice that the
sum of all blocks exactly matches the results produced by the
original input with the usual affine forms. The main advantage
of this approach is that computations are significantly faster
and require less memory compared to the usual affine forms.
On average, the execution time is reduced by 50% in the
majority of the case (see Section V).

We present some experimental results to assess the effi-
ciency of block-wise noising in practice. These experiments
are done by evaluating trained neural networks with affine
forms. We used noised grayscale images as inputs. In short,
our experiments show that block-wise noising is much faster
than usual affine forms (for instance, when using 4 blocks,
the execution time is reduced by a factor of 2). Block-wise
noising parallel has also been implemented, and the findings
demonstrate that it can speed up computation by 3.1–4 times
(see Section VI). In other words, our technique strikes a
balance between scalability and precision, enabling significant
speedups and memory savings without sacrificing precision.

This article is organized as follows. In Section III, we briefly
describe neural networks, affine arithmetic and activation
functions. We introduce our block-wise noising approach in



Section IV. Section VI deals with parallel block-wise noising.
The experimental results are described in Section V and we
conclude in Section VII.

II. OVERVIEW

In this section, we introduce informally our block-wise
noising technique, and we illustrate how to compute with
it. These ideas are formalized further in Section IV. In our
example, illustrated in Figure 1, we use a 2 × 2 matrix of
affine forms. For instance, x00 = 2+ ε1. We also use a 2× 4
matrix of weights W and a vector b for the bias. Our technique
is taylored for the analysis of neural networks. So noise is
attached to the input x while W and b corresponds to the
weights of the NN and contains scalar coefficients.

Fig. 1: Inputs given to a fully connected layer.

Fig. 2: The first operation of fully connected layer.

Fig. 3: The second operation of fully connected layer.

As usual in neural networks, a fully connected layer com-
putes yj =

∑n
i=1 Wij .xi + bj . We obtain for our example:

y1 = 7 + ε1 − 2ε3 + 2ε4, y2 = 3 + ε1 − 2ε2 + 2ε4.

For efficiency reasons, instead of x, we want to use block-
wise noising, so we split x into two blocks: Block 1 and Block
2 (see Figure 6).

Block 1

2 + ε1 3 + 0ε2

1− ε3 4 + 0ε4

Block 2

2 + 0ε1 3 + 2ε2

1 + 0ε3 4 + 2ε4

Fig. 6: Splitting of x into two block-wise noising.

For example, in the case of Block 1 we add non-zero noise
symbols for the red part and zero noise symbols for the blue

part. Conversely, for Block 2 we set the noise symbols for the
red parts and a zero noise symbols in the blue parts.

We compute fully connected layers for Block 1 and Block
2.

For Block 1, we have

b11 = 7 + ε1 − 2ε3, b12 = 3 + ε1.

And for Block 2, we have

b21 = 7 + 2ε4, b22 = 3− 2ε2 + 2ε4.

We can observe that

b11 + b21 = 14 + ε1 − 2ε3 + 2ε4 = y1 − 7.

Finally,

b12 + b22 = 6 + ε1 − 2ε2 + 2ε4 = y2 − 3.

The constants 7 and 3 subtracted to y1 and y2 are due to the
fact that centers are added twice in the formula and must be
removed. See Section IV for details.

In this way, we reduce the execution time and the memory
needed to calculate a fully connected layers without precision
loss. We will see that this approach also holds for other kinds
of layers, convolutional layers in particular.

III. BACKGROUND MATERIAL

In this section, we introduce some basic concepts of neural
network analysis by affine forms. Section III-B covers neural
network zonotope, Section III-A covers affine forms, while
Section III-C discusses abstract transformers for activation
functions.

A. Affine Forms
The affine forms [14, 15] and operations between them are

introduced in this section. An affine form x̂ is defined by:

x̂ = x0 +

n∑
i=1

xiεi . (1)

Where, x0, xi, i > 0 and εi represent the center value, partial
deviations and noise symbols, respectively. The values of these
noises are unknown but lie in the interval [-1, 1].

The elementary operations among affine forms +, − and
multiplication by constant are defined as follows.

x̂± ŷ = (x0 ± y0) +

n∑
i=1

(xi ± yi)εi , (2)

x̂± a = (x0 ± a) +

n∑
i=1

(xi)εi , (3)

x̂× a = (ax0) +

n∑
i=1

(axi)εi . (4)

The multiplication is one of the non-univariate operations, the
product of two affine forms is defined by:

x̂× ŷ = (x0 +

n∑
i=1

xiεi)× (y0 +

n∑
i=1

yiεi)

= x0y0 +

n∑
i=1

(x0yi + y0xi) +

(
n∑

i=1

|xi| ×
n∑

i=1

|yi|

)
εn+1 .



B. Deep Neural Networks

In this paper, we consider several kinds of neural networks
layers, enumerated hereafter.

Fully connected layers [16]: also known as dense layers,
involve every neuron in one layer being connected to every
neuron in the next layer, they are commonly used in the output
of neural networks. The entries of the output y for a given
input x are given by

yj =

n∑
i=1

xi.Wijw + bj , (5)

where W ∈ Rn×m assigns a weight to each edge of the
network, b ∈ Rn assigns a bias to each node and x assigns
an affine input as follows: x = x0 +

∑n
i=1 xiεi.

Convolutional layers [16]: are used to extract features
from input data, such as images, by applying a set of learnable
filters to local regions of the input. Each convolutional oper-
ation includes stride, filter size, and zero padding, a positive
integer that specifies sliding steps for each operation. This
allows the network to learn spatial hierarchies of patterns and
features that can be used for classification, segmentation, and
other image processing tasks. The entries of the output y for
a given input x are given by

yi,j =

p∑
i′=1

q∑
j′=1

Wi′j′ .x(i+ i′ − 1)(j + j′ − 1) + bi . (6)

Pooling layers [17]: are typically applied after convolu-
tional layers to reduce the dimensionality of the input. Max
Pooling, the most common pooling method using the Max
function inside the pooling filter (2× 2) as output.

In DNN, there are two kinds of operations: addition and
multiplication by a constant, whose definition in the zonotope
domain are given in equations (2) and (4).

C. Activation Functions

Fig. 7: The zonotope approximation of the Relu function.

Affine forms is a successful approach for verifying neural
networks, as they are fast and exact for affine transformations
[14]. However, when it comes to model nonlinear activation
functions such as Relu, the zonotope abstraction [18] is
not exact. Therefore, an approximation technique [7] which
creates a tradeoff between computational cost and precision
is necessary. Following the approach developed in [19] for
intervals, we present hereafter our approximation method that
strikes a balance between computational cost and precision.

Let x be an affine form x = x0+
∑n

i=1 xiεi given to a Relu
function (y = Relu(x)). Let lx = x0 + (

∑n
i=1 |xi|)×−1 and

ux = x0+(
∑n

i=1 |xi|)×1 denote the lower and upper bounds
respectively, for the input x. The abstract transformer of the
Relu activation function is given by:

Relu(x) =

x for lx ≥ 0

0 for ux ≤ 0

λx+ ν + νε otherwise

where λ = ux

ux−lx
and ν = ux(1−λ)

2 represents the minimum of
the area of the parallelogram in the xy-plane and the center of
the zonotope in the vertical axis respectively (see Figure 7).

Let us consider an example to illustrate this concept. Sup-
pose we have an affine input x represented as x = 1+2ε1+3ε2
and we want to compute y = Relu(x). Here, lx = −4, ux = 6,
λ = 0.6 and ν = 1.2. So the result of Relu is

1.8 + 1.2ε1 + 1.8ε2 + 1.2ε3 .

We end this section by introducing the soundness of the
abstract Relu. First of all, let us define the concretization of
an affine form x̂ defined in equation 1 into an interval.

γI(x̂) = x0 +

(
n∑

i=1

|xi|

)
× [−1, 1].

Then, we define the soundness of the abstract transfer activa-
tion functions Relu, Let x ∈ R and x♯ ∈ Aff, such that x ⊆
γ(x♯). Then Relu(x) ⊆ γ(Relu(x♯)).

IV. BLOCK-WISE NOISING

We propose in this section a new approach called block-wise
noising. This approach strikes a balance between scalability
and precision, enabling a faster approximation without sacri-
ficing precision. It can be particularly useful for applications
such as computer vision, where real-world images are often
subject to various types of perturbations.

Let us see this example in order to clarify this approach:
we split our input into, n regions, as shown in Figure 8 (in
our example we take n = 4). Then, we add non-zero noise
symbols only to one region (red parts) and zero noise symbols
for all other regions (gray parts). We repeat this process for

Fig. 8: Splitting input into block-wise noising.



all regions of our input. At the end of the computation, for
linear layers (fully connected or convolutional without Relu),
we observe that the sum of all regions is exactly the same as
the results given by the original input with affine forms (one
block). To prove this, we have the following two theorems:

Theorem IV.1. Let x and y two affine forms defined by :

x = x0 +

n∑
i=1

xiεi , and y = y0 +

n∑
i=1

yiεi .

If n = 2u, then x and y can be split into k pieces of size 2v

with v ≤ u

x =

k∑
i=1

ai , with ai = x0 +

2v×i∑
j=(i−1)×2v+1

xjεj .

And,

y =

k∑
i=1

bi , with bi = y0 +

2v×i∑
j=(i−1)×2v+1

yjεj .

Then,

x+ y = x+ y − (k − 1)(x0 + y0) .

Proof. Base Case: Let us consider the case when n = 20. In
this case, we can split x and y into k = 1 pieces of size 20

with v ≤ u ≤ 0. The theorem states that:

x = a1 = x0 + x1ε1 , and y = b1 = y0 + y1ε1 .

Now let us calculate x+ y

x+ y = a1 + b1 ,

= (x0 + y0) + (x1 + y1)ε1 ,

= x+ y − 0(x0 + y0) .

We can see that the theorem holds for the base case.
Inductive Step: Now, let us assume that the theorem holds

for n = 2u. We will prove that it also holds for n = 2u+1. In
other words, we assume that for n = 2u, we can split x and
y into k pieces of size 2v with v ≤ u, and the theorem holds
for this case.
Now, let us consider the case n = 2u+1. We can split x and
y into k pieces of size 2v+1 with v + 1 ≤ u+ 1.

x =

k∑
i=1

ai , with ai = x0 +

2v+1×i∑
j=(i−1)×2v+1+1

xjεj .

And,

y =

k∑
i=1

bi , with bi = y0 +

2v+1×i∑
j=(i−1)×2v+1

yjεj .

We have

x+ y =

k∑
i=1

(ai + bi) .

=

k∑
i=1

(x0 + y0) +

2v+1×i∑
j=(i−1)×2v+1+1

(xj + yj)εj .

Then,

x+ y = x+ y − k(x0 + y0) .

We have shown that if the theorem holds for n = 2u, then
it also holds for n = 2u+1. By the principle of mathematical
induction, the theorem holds for all values of n = 2u.

Let us consider now the multiplication of an affine form by
a constant.

Theorem IV.2. Let x an affine form defined by :

x = x0 +

n∑
i=1

xiεi .

If n = 2u, then x can be split into k pieces of size 2v with
v ≤ u

x =

k∑
i=1

ai , with ai = x0 +

2v×i∑
j=(i−1)×2v+1

xjεj .

Then,
x× c = x× c− (k − 1)(x0 × c) .

Proof. Base Case: Let us consider the case when n = 20. In
this case, we can split x into k = 1 pieces of size 20 with
v ≤ u ≤ 0. The theorem states that:

x = a1 = x0 + x1ε1 .

Now let us calculate x× c

x× c = a1 × c ,

= (x0 × c) + (x1 × c)ε1 ,

= x× c− 0(x0) .

We can see that the theorem holds for the base case.
Inductive Step: Now, let us assume that the theorem holds

for n = 2u. We will prove that it also holds for n = 2u+1. In
other words, we assume that for n = 2u, we can split x into
k pieces of size 2v with v ≤ u, and the theorem holds for this
case.
Now, let us consider the case n = 2u+1. We can split x into
k pieces of size 2v+1 with v + 1 ≤ u+ 1.

x =

k∑
i=1

ai , with ai = x0 +

2v+1×i∑
j=(i−1)×2v+1+1

xjεj .

We have

x× c =

k∑
i=1

c× ai ,

=

k∑
i=1

x0 × c+

2v+1×i∑
j=(i−1)×2v+1+1

xjεj × c .

Then,
x× c = x× c− k(x0 × c) .

We have shown that if the theorem holds for n = 2u, then
it also holds for n = 2u+1. By the principle of mathematical
induction, the theorem holds for all values of n = 2u.

V. EFFICIENCY OF BLOCK-WISE NOISING

In this section, we investigate the efficiency of block-
wise noising, in terms of execution time. We present the
experimental protocol in Section V-A and report the results
in Sections V-B and V-C.



A. Experimental Setting

In this section, we outline the methodology to evaluate
block-wise noising in terms of execution time. We employed
fully connected feedforward and convolutional neural net-
works to process grayscale images of size 28 × 28, with
pixel values normalized to the range between −1 and 1 with
randomly assigned weights between −1 and 1. The Rectified
Linear Unit (Relu) function is used as the activation function.

Fig. 9: Image used to test the efficiency of block-wise noising.

Fully Connected Feedforward Networks: we use net-
works consisted of L = 2, 4 and 6 layers. Each layer contains
28 × 28 neurons. The input given to our neural networks is
displayed in Figure 9. The networks input, denoted as x0, is a
vector of 28× 28 affine forms, each accompanied by a noise
symbol representing the pixels intensity. Let cij represent the
color of the pixel (i, j) and ν denote the noise intensity. The
value of the i × n + j component of the input vector x0 is
given by:

x0[i× n+ j] = cij + νcijεi×n+j . (7)

Note that we associate the same intensity of noise to all the
pixels and we consider ν = 0.02.

Convolutional Networks: The networks consisted of L =
4, 5 and 6 layers. The input x0 has a size 28 × 28 with
28 × 28 noise symbols (one noise symbol per pixel). Each
convolutional networks consist of convolution, nonlinearity,
and pooling layers.

Now, let us focus on the case of the block-wise noising.
First, let us underline that we need to use the same neural
network that we are validating without modification. We
consider the cases where our input is split into 4, 8 and 16
blocks.

In our experiments, we measured the time needed to execute
the neural network with different numbers of blocks.

All experiments were performed with Python on a Dell Inc.
Latitude 5400 laptop, which featured an Intel Core i5−8365U
CPU running at 1.60 GHz 8 core with 8.0 GB of RAM.

B. Execution Time

Our experimental results, displayed in figures 11 and 12
which represents the execution time taken to run a fully con-
nected feedforward neural network and convolutional neural
network, respectively. With different layers in function of the

Dataset 1 blocks 4 blocks 8 blocks 16 blocks

Sac 2.104s 9, 1.103s 8.103s 7, 9.103s

Sneakers 1, 9104s 8, 7.103s 7, 1.103s 6, 9.103s

Dress 2, 1.104s 9, 2.103s 8, 1.103s 7, 9.103s

T-shirt 2, 1.104s 9, 2.103s 8, 1.103s 7, 9.103s

Fig. 10: Execution time for dataset MNIST with fully con-
nected neural networks at 2 layers.

number of blocks used to split the input (1, 4, 8, and 16)
blocks.

It can be observed that for a fully connected feedforward
neural network, the execution times increases as the number
of layers increases.

Also, we note that as the number of blocks increases,
execution times decrease. For instance, the execution times
taken by the neural networks, for L = 4 are: 5.8e + 4s,
2.5e+4s, 2.2e+4s and 2.1e+4s. For 1, 4, 8, and 16 blocks,
respectively. The results show that the block-wise noising
divided the execution times by 2 without loss of precision. As
seen in Figure 10, these results hold true for all input types.

Additionally, in the case of the convolutional neural net-
works, the execution times drop as the number of input blocks
grows, but they start to rise once the number of input blocks
exceeds 4. For example, for L = 5 the execution times taken
by the neural networks are: 1.0e+3s, 6.0e+2s, 6.9e+2s and
8.9e+2s. For 1, 4, 8 and 16 blocks, respectively. This can be
explained by the fact that, as the number of blocks increases,
overlaps between blocks become more frequent, leading to
redundant calculations. In other words, convolution operations
are repeated for pixels that are common to different blocks,
resulting in an increase in execution time compared to fully
connected neural networks.

Furthermore, we observe that the convolutional layers are
faster than fully connected layers, we can explain by the
fact that convolutional layers utilize spatial locality by shar-
ing weights and conducting local operations, whereas fully
connected layers require all input neurons to be connected to
all output neurons, which can result in a larger number of
computations.

C. Experimenting with Trained Neural Networks

In this section, we demonstrate some experimental outcomes
using five trained neural networks (NNs). All these NNs
are classifers. They are described in Figure 13. The first
column of the table gives the model and its input, the second
column shows the number of layers, the third column gives
the number of neurons, and the fourth column gives the
number of parameters. A complete description of the network
architectures is given in Appendix A.

We use the three popular datasets for our experiments:
MNIST, Fashion-MNIST [21] and CIFAR-10 [22]. MNIST
and Fashion-MNIST contains 60000 grayscale images of size
(28 × 28) and Cifar-10 contains 60000 grayscale images of



6 layers NN 2, 4, 6 layers NN

Fig. 11: Execution time in function of the number of blocks for AllBlocks (Block A, Block B, Block C, Block D) and OneBlock
(Block A) of figure 8. Input image has a size 28× 28 with 2, 4 and 6 layers for the fully connected neural network. We use
the image of Figure 9.

5 layers NN 4, 5, 6 layers NN

Fig. 12: Execution time in function of the number of blocks for AllBlocks (Block A, Block B, Block C, Block D) and OneBlock
(Block A) of figure 8. Input image has a size 28× 28 with 4, 5 and 6 layers for the convolutional neural network. We use the
image of Figure 9.

Model Input Layers Neurons Parameters

FashionMNIST

CNN (28 × 28) 7 266 431, 242

FC (28 × 28) 6 970 575, 050

CIFAR

CNN (32 × 32) 9 522 443, 882

MNIST

CNN (28 × 28) 9 202 157, 258

FC (28 × 28) 5 234 111, 146

Fig. 13: Model configurations used in our experiments.

size (32× 32). We trained two types of neural networks: fully
connected and convolutional neural networks.

We transform the input using affine forms. Then we apply
the ReLU activation function which, is previously defined in
Section III-C.

Figure 14 displays the results of our measurement of the

time required to run each neural network with various amounts
of blocks.

We notice that for all our fully connected networks, which
use different types of data (MNIST and Fashion-MNIST), the
execution time decreases significantly when the number of
blocks increases. For example, in the case of a fully connected
network that use the Fashion-MNIST dataset, the execution
times are: 13000s, 5700s and 5080s for 1, 4 and 8 blocks,
respectively. It is shown that when we use our block-wise
noising method with a fourth block the execution time is
roughly divided by 2.

We can observe that in the case of the convolutional
networks the execution times drop as the number of input
blocks grows, but they start to rise once the number of
input blocks exceeds 4. For example, for CNN that use the
Fashion-MNIST dataset the execution times are: 5700s, 3960s
and 4480s. For 1, 4 and 8 blocks, respectively. This can be
explained by the fact that, as the number of blocks increases,
overlaps between blocks become more frequent, leading to



Model Input 1 blocks 4 blocks 8 blocks

FashionMNIST

CNN (28 × 28) 5700s 3960s 4480s

FC (28 × 28) 13000s 5700s 5080s

CIFAR

CNN (32 × 32) 20000s 15000s 160000s

MNIST

CNN (28 × 28) 5600s 4300s 5300s

FC (28 × 28) 1100s 520s 476s

Fig. 14: Execution time with fully connected and convolutional
neural networks at different depths.

redundant calculations. In other words, convolution operations
are repeated for pixels that are common to different blocks,
resulting in an increase in execution time compared to fully
connected layers.

VI. BLOCK-WISE NOISING PARALLELISM

The computational cost of training and inference increases
along with the complexity of neural networks. To address this
issue, parallelization techniques have emerged as a crucial
method for reducing the execution time of neural networks.
Data parallelism [23] and model parallelism [24] are some of
the commonly used methods for parallelizing neural networks.
However, in our study, we aim to parallelize affine forms
instead of neural networks.

By incorporating a few synchronization primitives, we use
the design and output of block-wise noising (as described in
Section V) to generate a simple model for parallel implemen-
tation. One strategy to parallelize the block-wise noising is to

Fig. 15: Block-Wise Noising Parallelism.

distribute the computations of each block (Block A, Block B,
Block C and Block D) as shown in Figure 15 between the

different processor and performs those computations simul-
taneously :

Input = [BlockA,BlockB,BlockC,BlockD]

Fig. 16: Execution time of Block-Wise Noising parallelism: 4
blocks and 4 processors.

By parallelizing the computation of affine forms in this
manner, we can achieve faster execution times than sequential
block-wise noising for complex neural networks.

Note that, we use the experimental setting described in
Section V and we measure in our experiments the time needed
to execute the neural network.

All experiments were performed with Python on a cluster
named MUSE, which consisted of 308 PowerEdge C6320
servers based on Intel Xeon E5 − 2680v4 chips, and each
server had 128GB of RAM.

A. Execution time

The execution time of trained neural networks (NNs), de-
scribed in Appendix A, is shown in figures 16, 17 and 18
of the experimental results presented in this section. The top-
right histogram represents NNs with 8 blocks and 4 processors
(each processor calculates 2 blocks), the top-left histogram
corresponds to NNs with 4 blocks and 4 processors, and the
bottom histogram corresponds to NNs with 8 blocks and 8
processors. Each histogram displays a set of three bars for
each NNs:

The first bar represents the usual affine form, the second
bar block-wise noising (n = 4 and n = 8) and the last bar
block-wise noising parallelism, respectively.

The result shows that the execution time obtained using 4
and 8 processors are more faster than those obtained with the
sequantial version. As an example, for the CNN-CIFAR model
the execution times obtained with 4 blocks and 4 processors
are as follows: 20000s, 15000s and 3400s. For usual affine,
block wise noising sequential and block wise noising parallel,
respectively. While the execution time starts to increase when
the number of blocks exceeds the number of processors (8
blocks for 4 processors, with each processor calculating 2
blocks). For instance, the CNN-CIFAR model grep execution
time is 4400s.



Model
4 Blocks and 4 Processors 8 Blocks and 8 Processors

Sequential Parallel Speed Up Sequential Parallel Speed Up

CNN-CIFAR 15000s 3800s 3.9 16000s 2200s 7.2

CNN-MNIST 4300s 1400s 3.1 5300s 950s 5.5

FC-MNIST 520s 140s 3.7 476s 65s 7.3

CNN-FASHION-MNIST 3960s 1000s 3.9 4480s 740s 6

FC-FASHION-MNIST 5700s 1400s 4 5080s 680s 7.4

TABLE I: Speed Up results.

Fig. 17: Execution time of Block-Wise Noising parallelism: 8
blocks and 8 processors.

Fig. 18: Execution time of Block-Wise Noising parallelism: 8
blocks and 4 processors.

B. Speedup analysis

In order to evaluate the block-wise noising parallel perfor-
mance in this section, we compute the speedup [25], which
represents a correlation between the block-wise noising serial
execution time and the parallel execution time in p processors
(p = 4 and p = 8 ). Alternatively, we calculate:

Speed Up =
Ts

Tp
.

The Speed up are given in Table I. We note that Block-wise-
noising parallel has been found to achieve a speedup of 3.1−4
for p = 4 and 5.5− 7.4 for p = 8.

It should be noted that the speedups are significant, and
that block-wise noising is of major interest for neural network
verification.

VII. CONCLUSION

In summary, we developed both a sequantial and paral-
lelized version of block-wise noising for the analysis of neural
networks by affine forms. We evaluated the effictivness of
block wise noising on execution time of various types of
NNs. Our results demonstrate that block wise noising is faster
compared to usual affine forms, which divide the execution
time by two in the majority of the case.

Several perspectives can be considered for this work. First,
concerning the experiments, it would be interesting to test
block-wise noising with large neural networks that have
billions of parameters, such as VGG-16 and AlexNet, to
determine the limits of our method. Second, regarding acti-
vation functions, it would be intersting to explore the abstract
transformations for other types of activation functions, such
as sigmoid and tanh. This would allow us to broaden our
understanding of the applicability of our approach. Third, it
would be valuable to compare the block-wise noising method
with our prior work on compressed affine forms [14] to
assess the performance and limitations of each approach.
This comparative analysis would provide insights into the
strengths and weaknesses of both methods. Finally, it would
be interesting to investigate if the block-wise noising approach
proposed in this paper can be adapted to other techniques for
validation and explainability of NN such as the approaches
based on automatic differentiation.
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APPENDIX

A. Neural Networks Evaluated

We test with five trained networks which are described
below:

Fashion-MNIST
• CNN

Input(28× 28× 1) → Conv(32× 3× 3) → Relu
→ MaxPool(2 × 2) → Conv(64 × 3 × 3) → Relu →
MaxPool(2×2) → Flatten → Fc(256) → Relu → Fc(10)

• FC
Input(28 × 28 × 1) → Flatten → Fc(512) → Relu →
Fc(256) → Relu → Fc(128) → Relu → Fc(64) → Relu
→ Fc(10) → y

MNIST
• CNN

Input(28 × 28 × 1) → Conv(64 × 3 × 3) → Relu →
MaxPool(2 × 2) → Conv(64 × 3 × 3) → Relu →
MaxPool(2× 2) → Conv(64× 3× 3) → Relu → Flatten
→ Fc(128) → Relu → Fc(64) → Relu → Fc(10) → y

• FC
Input(28 × 28 × 1) → Flatten → Fc(128) → Relu →
Fc(64) → Relu → Fc(32) → Relu → Fc(10) → y

Cifar-10
• CNN

Input(32 × 32 × 1) → Conv(32 × 3 × 3) → Relu →
Conv(32 × 3 × 3) → Relu → MaxPool(2 × 2) →
Conv(32× 3× 3) → Relu → Conv(32× 3× 3) → Relu
→ MaxPool(2 × 2) → Flatten → Fc(512) → Relu →
Fc(10) → y


