
EasyChair Preprint
№ 9393

A Real-Time Flood Forecasting Hybrid Machine
Learning Hydrological Model for Krong H’Nang
Hydropower Reservoir

Phuoc Sinh Nguyen, Truong Huy Nguyen and The Hung Nguyen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 30, 2022



 

A real-time flood forecasting hybrid machine learning 

hydrological model for Krong H’nang hydropower reservoir 

Phuoc Sinh Nguyen1,2*, Truong Huy Nguyen1,3, The Hung Nguyen2 

1 Faculty of Water Resources Engineering, University of Science and Technology-The 

University of Da Nang, 50000, Vietnam. 
2 Song Ba JSC, 573 Nui Thanh, Hai Chau, Da Nang, 50000, Vietnam. 
3 Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, 

Montreal, Quebec H3A 2K6, Canada 

*phuocsinhbk@gmail.com; huy.nguyen5@mail.mcgill.ca; ngthung@dut.udn.vn 

Abstract. Flood forecasting is critical for mitigating flood damage and ensuring a safe operation 

of hydroelectric power plants and reservoirs. In this paper, the authors present a hybrid machine 

learning hydrological model to enhance the accuracy of a real-time flood forecasting. This model 

is developed based on the combination of the HEC-HMS hydrological model and an Encoder-

Decoder-Long Short-Term Memory network. The proposed hybrid model has been applied to 

the Krong H’nang hydropower reservoir. The observed data from 33 floods monitored between 

2016 and 2021 are used to calibrate, validate, and test the hybrid model. Results show that the 

HEC-HMS-ANN hybrid model significantly improves the forecast quality, especially for long 

forecasting time steps. The KGE efficiency index, for example, increased from ∆KGE = 16% at 

time t + 1 to ∆KGE = 69% at time t + 6 hours, similar to other indicators (such as peak error and 

volume error). The computer program developed for this study is being used at the KrongHnang 

hydropower to aid in reservoir planning, flood control, and water resource efficiency. 

Keywords. Hydrological hybrid model, HEC-HMS, machine learning, KrongH’nang, real-

time flood forecasting. 

1.  Introduction 
In recent years, extreme weather patterns such as rainfall and floods have appeared with increasing 

frequency and intensity, exceeding historical values. Some studies have shown that under the impact of 

climate change, extreme rainfall events may occur more frequently, increasing the severity of flooding 

[1,2]. Flood forecasting and warning information are thus critical to relevant authorities and departments 

in planning to prevent, respond to, and mitigate the harmful effects of floods, as well as evacuate people 

from flood-prone areas. Furthermore, this data assists state management agencies, such as irrigation and 

hydropower plant operators, in controlling floods to ensure safety for the structure and downstream areas 

[3,4]. 

There are different methods and approaches, ranging from simple to complex, for modeling the 

rainfall-runoff relationship. These methods can be divided into two types: physically-based models and 

data-driven models. Which method should be selected is determined by the amount of data available in 

each case study [5]. Several hydrological physical-base models that have been widely studied and 

applied in practice, such as MIKE-NAM, SWAT, HEC-HMS, and so on, have shown the feasibility of 
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simulating and forecasting the rainfall-runoff scenario [6–8]. However, these models often require a 

variety of data types (e.g., topographic, geomorphological, meteorological, and hydrological data) and 

in-depth modeling expertise to establish relevant databases on the rainfall-runoff characteristics of each 

study basin. It also takes a long time to adjust the parameters and evaluate the model, making it difficult 

to respond quickly to flood events that fluctuate [9,10]. 

In the meanwhile, the goal of data-driven models is to establish correlations between precipitation 

and discharge from observed data without taking related physical processes into account. Common 

models in this group can be mentioned as linear regression models, nonlinear regression models, 

autoregressive integrated moving averages (ARIMA), artificial neural networks (ANN), adaptive neuro-

fuzzy inference systems (ANFIS), and support vector machines (SVM). In the models mentioned above, 

the artificial neural network model has been widely applied to many hydrological problems. A number 

of previous studies have demonstrated that ANN models outperform other classical techniques in terms 

of their ability to simulate complex nonlinear processes of input and output variables. The ANN models 

can be trained to capture the nonlinear rainfall-runoff relationship and predict runoff quantitatively 

without prior knowledge of basin characteristics [11,12]. The limitation of this approach is that the user 

cannot access the internal logic (black box model), and it does not show the physical characteristics of 

rainfall-runoff, topographic changes, and surface buffer factors on the catchment [13]. 

The hydrological hybrid model was created to combine the advantages of both types of models. Many 

authors have investigated the interaction of data-driven models with physically-based models such as 

SWMM [14], SWAT [15], and HEC-RAS [16] to forecast floods, and urban flooding and shown the 

superiority of the hybrid model. However, the application of ANN to hydrological problems in Vietnam 

is still in its early stages, specific applied research is required to demonstrate both the effectiveness and 

limitations that may be encountered when using it for flood forecasting decision support on reservoir 

operation. 

In this study, the hybrid machine learning hydrological model, which combines the HEC-HMS and 

ANN model, was developed and tested for the Krong H'nang hydropower reservoir located in the Dak 

Lak province. First, the HEC-HMS physical-base hydrology model will be built to simulate the rainfall-

runoff process in the basin. The output from the HEC-HMS will continue to be the input variable for the 

ANN model using the Encoder-Decoder-Long Short Term Memory (LSTM) architecture [12,17]. Data 

from 33 floods from 2016 to 2021 is divided into three data sets for training, validation, and testing in 

the following proportions 70:15:15. The results of the hybrid model will be evaluated in detail, 

considering the degree of improvement in flood forecasting quality at time steps compared to the HEC-

HMS model. 

2.  Study Area and Data Used 
Krong H'nang is one of the major hydroelectric projects in the Ba River basin, one of the largest river 

catchment in the South-Central region of Vietnam. The earth dam was built on the Ea KrongH’nang 

River, which has a length of 1,068 meters and is located on National Highway 29, about 80 kilometers 

northeast of Buon Ma Thuot (Dak Lak province). The basin has an area of 1,168 km2 with the terrain 

divided by the Truong Son range and the plateau, forming two distinct topographical regions (Figure 

1). The upstream area with a topographic elevation above 500 m is the basalt red soil plateau, planted 

with industrial crops and influenced by the southwest monsoon during the rainy season from May to 

November. While the downstream area is a plain of rice and cash crops with elevations from 240 to 500 

m, interspersed with mountain ranges with peaks of up to 1,200 m, forming valleys with steep slopes of 

8–15% during the rainy season from September to December and is strongly influenced by the northeast 

monsoon, tropical depressions, and storms in the East Sea [18]. 

Data for the period from September 2016 to December 2021 includes rainfall data from 15 gauges, 

measurement inflow data, and the HEC-HMS simulation output data at 33 floods (15-minute intervals), 

which is used as input data for the hybrid model. Evaporation losses from the reservoir are normally 

small during the flood season and are ignored in the model. The MinmaxScaler function (1) normalizes 

the input data to the range [0, 1] to improve the ANN model's training speed and learning efficiency. 



xscaler =
x −  xmin

xmax − xmin
 (1) 

Where 𝑥 is the raw value, xcaler is the value after normalization. 

As shown in Figure 2, the entire dataset will be divided into subsets with the respective proportions 

of 70% for model training, 15% for calibration, and 15% for testing. 

 

Figure 1. Map of Krong H’nang river basin. The main basin is divided into six sub-basins (Sub1 to 

Sub6). Color indicates the elevation from low (blue color) to high (red color). The star markers show 

the locations of 15 automatic rain gauges (T1 to T15). The green triangle represents the location of 

Krong H’nangdam and the automatic water lever gauges.  
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Figure 2. Data from 33 flood events ranging from 2016 to 2021 at Krong H'nang hydropower reservoir 

(data between floods is not displayed). The dataset was divided for training, calibration (valid), and 

testing at the ratio of 70:15:15. 

3.  Methodology 

3.1.  Model structure and descriptions 

The HEC-HMS-ANN hybrid model structure is illustrated in Figure 3 with an input layer consisting of 

15 stations of rainfall data (X1, X2,…, X15), measured discharge (𝑄𝑜𝑏𝑠)  ranging from the last 8 hours 

(𝑡 − 8) to now (𝑡 = 0), and forecasted data from the HEC-HMS model (𝑄ℎ𝑚𝑠) ahead to  𝑡 + 6 hours. 

The hidden layer consists of  𝑘 layer with 𝑛 neural in each layer. The output layer is the prediction of 

the reservoir’s inflow 𝑄𝑝𝑟𝑒. 
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Figure 3. The hybrid hydrological model structure, which combines the HEC-HMS and ANN model. 



The size of the input data series for the ANN model is critical and has a large impact on the model 

results, but there is currently no specific theoretical formula for this. However, we can rely on the 

correlation analysis between flood discharge and its delay or with the delay of another time series (such 

as precipitation) through the cross-correlation function (CCF) defined by expression (2) to make a 

reasonable decision. 

𝐶𝐶𝐹𝑥𝑦
𝑘 =

𝐶𝑉𝐹𝑥𝑦
𝑘

√𝜎𝑥𝜎𝑦.
 (2) 

Where 𝑘 is the number of lag time; 𝜎x and 𝜎y are the standard deviation of  𝑥 and 𝑦; 𝐶𝑉𝐹xy
k   iss the 

cross-covariance function of x and y, determined by the expression (3). 

𝐶𝑉𝐹𝑥𝑦
𝑘 =

1

𝑁𝑡 − 1
∑ (𝑦𝑡 − �̅�)

𝑁𝑡−𝑘

𝑡=1

. (𝑥𝑡+𝑘 − �̅�) (3) 

Whe t is time steps; �̅� and �̅� are mean of 𝑥 and y, Nt is number of data point of time series.  

 

Figure 4. The cross-correlation function (CCF) bettwen reservoir’s inflow with (a) average 

precipitation, and (b) reservoir’s inflow at lag-time steps. 

Based on the results of cross-correlation analysis of rainfall and runoff data series at lag-time steps 

shown in Figure 4, the sequence length has a high correlation with the target series (forecast flow) 

selected from 𝑡 - 8 hours to 𝑡 + 6 hours (see Table 1). 

Table 1. Input and output data for the HEC-HMS-ANN hybrid model at different time steps. 

Data 
Time steps (h) 

t-8 t-7 … t-2 t-1 t t+1 t+2 … t+5 t+6 

X1, X2,..,X15 (mm) ✓ ✓ ✓ ✓ ✓ ✓      

Xpre (mm)            

Qobs (m3/s) ✓ ✓ ✓ ✓ ✓ ✓      

Qhms (m3/s) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Qpre (m3/s)      ✓ ✓ ✓ ✓ ✓ ✓ 

(Notes: The symbol ✓ represents the avaiable data used, the remaining cells have no data.) 

3.2.  The hydrological HEC-HMS model 

The Hydrologic Engineering Center- Hydrologic Modeling System (HEC-HMS) was developed by the 

Hydrologic Engineering Center - U.S. Army  (USACE) [19]. Figure 5 illustrates the HEC-HMS process 

that simulates the hydrological processes of a watershed from precipitation to watershed discharge 
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through physical components and cycles: precipitation, evaporation, infiltration, overland flow, base 

flow, and stream channel. 

 

Figure 5. Illustrate the natural rainfall-runoff process and the flow diagram from the rainfall in the 

hydrological HEC-HMS model [20]. 

3.3.  Encoder-Decoder-Long Short Term Memory Network  

The Long Short-Term Memory Network (LSTM) is a special neural network architecture, designed by 

Hochreiter and Schmidhuber (1997) to overcome the weakness of traditional regressive neural networks 

by virtue of its ability to learn information in the long term. For the rainfall-runoff problem, this is 

extremely meaningful because it is possible to use rainfall-runoff data from the past for a long time to 

forecast the flow in accordance with the characteristics of water storage and the natural lag time in the 

basin. 

The structure of the LSTM consists of four hidden layers (3 sigmoids and 1 tanh) that interact in a 

special way (see Figure 6). The idea behind LSTM is that the cell state, which is a kind of straight-line 

conveyor belt, performs mathematical operations (vector multiplication, addition) to aid in the stable 

transmission of information across the entire network. The transformation, transmission, and storage of 

information in the LSTM network through the steps described in expressions from (4) to (9). 

Figure 6. The LSTM network's iterative architecture module that contains four hidden layers (3 

sigmoid and 1 tanh) that interact with one another [21]. 

 

𝑓𝑡  = 𝜎(𝑊𝑓 . 𝑥𝑡  + 𝑈𝑓ℎ𝑡−1  + 𝑏𝑓) (4) 

𝐶�̃�  = 𝑡𝑎𝑛ℎ(𝑊𝑐̃ . 𝑥𝑡  + 𝑈𝑐̃ℎ𝑡−1  + 𝑏𝑐̃) (5) 

𝑖𝑡  = 𝜎(𝑊𝑖. 𝑥𝑡  + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (6) 

𝐶𝑡  =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� (7) 

𝑜𝑡  =  𝜎(𝑊𝑜𝑥𝑡  + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (8) 

ℎ𝑡  =  𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (9) 

Where 𝑖𝑡 , 𝑓𝑡, 𝑜𝑡 are the input gate, the forget gate, and the output gate, respectively; 𝑊𝑖, 𝑊𝑓 , and 

𝑊𝑜 represent the weights connecting input, forget, and output gates with the input, respectively; 𝑈𝑖 , 𝑈𝑓, 



and 𝑈𝑜 denote the weights from input, forget, and output gates to the hidden states, respectively; 𝑏𝑖, 𝑏𝑓, 

and 𝑏𝑜 are input, forget, and output gate bias vectors, respectively; 𝐶�̃� is the cell input; 𝐶𝑡 is the current 

cell state; ;  ℎ𝑡 refers to current hidden state; ∗ is element-wise multiplication; 𝜎 is the logistic sigmoidal 

function and 𝑡𝑎𝑛ℎ is the hyperbolic tangent function. 

An encoder and a decoder combined with the LSTM network layers form the Encoder-Decoder 

LSTM architecture (Figure 7), which is effectively used with problems involving time-sequential data 

series of length input and output strings are different and include many input and output variables. 

 

Figure 7. Architecture of the Encoder-Decoder-LSTM network (src: medium.com) 

3.4.  Model performance assessment 

To evaluate the performance of the model in capturing the real hydrologic system, several commonly 

used numerical indicators are selected. These include the percent error in peak discharge, the percent 

error in discharge volume, the Kling-Gupta efficiency (KGE, dimensionless). These equations are as 

follows: 

• Relative peak error (%): 

Peak error =
Qsim

p
−  Qobs

p

 Qobs
p  (10) 

• Relative volume error (%): 

Vol error = 100.
Vsim − Vobs

Vobs
 (11) 

 

• Kling-Gupta Efficiency (KGE): 

KGE = 1 − √(𝑅 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (12) 

Where:  

R =  

∑ (Qobs
i − Qobs). (Qsim

i − Qsim)
n

i=1

√∑ (Qobs
i − Qobs)2

n

i=1
√∑ (Qsim

i − Qsim)2
n

i=1

 (13) 

𝛼 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
 (14) 

𝛽 =
µ𝑠𝑖𝑚

µ𝑜𝑏𝑠
 (15) 

Where 𝑛 is the total number of data points, 𝑄 (m3/s) denotes discharge and 𝑉 (m3) is volume values 

at control points, 𝜎 is the standard deviation and 𝑄 is the mean of time-series data. Subscript 𝑠𝑖𝑚 and 

𝑜𝑏𝑠 denote simulated and observed time-series data, respectively. 
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The proportion of improvement in the hybrid model's good level compared to the single HEC-HMS 

model is calculated by increasing or decreasing the index values (%) according to expression (16). 

∆𝑀=
(𝑀1 − 𝑀𝑖) − (𝑀2 − 𝑀𝑖)

(𝑀1 − 𝑀𝑖)
. 100 (%) (16) 

Where ∆𝑀 is the degree of improvement in the M metric (KGE, Vol error, Peak error); 𝑀1, 𝑀2 are 

the evaluation indicators of the HEC-HMS model and the hybrid model, respectively; 𝑀𝑖 is the ideal 

value of indicators: KGE = 1;  Vol error =  0;  Peak error =  0. 

4.  Results and Discussion 

4.1.  The HEC-HMS model 

The Krong H'ang basin, with an area of 1,168 km2, is divided into 6 sub-basins (from Sub1 to Sub6). 

The main river from the outlet of sub-basin Sub1 through to Krong H'nang reservoir is divided into 4 

river sections (from Reach1 to Reach4) based on the topographic and hydrological characteristics of the 

basin. The components of the sub-basins and reaches are connected through junctions. The Krong 

H’nang catchment is established on the HEC-HMS model shown in Figure 8. The sub-basins area and 

the reach's length are measurable physical parameters, detailed in Table 2. There are 15 automatic rain 

gauges in the Krong H’nang basin. The rainfall data from the stations is calculated and converted to the 

average rainfall of the sub-basins according to the Thiessen polygon method. The optimal model 

parameters are automatically detected by the SCE-UA method [22]. The results of running the HEC-

HMS model for 33 floods in a 15-minute time step (𝑄ℎ𝑚𝑠) are stored in the database for convenience 

in training the ANN model [23]. 

 

 

Figure 8. Representation of Krong H’nang basin in the HEC-HMS model. The basin model is compised 

of 6 sub-basins (Sub1 to Sub6) and four reaches (Reach-1 to Reach-4). The meteorologic component 

utilizes observed rainfall data from 15 sites (T1 to T15). The average rainfall on the subbasin is 

interpolated using the Theissen polygon method. 

  



Table 2. Sub-basin area and length of main river sections. 

Sub-basin Sub1 Sub2 Sub3 Sub4 Sub5 Sub6 

Area (km2) 232.00 180.00 224.00 260.00 101.00 171.00 

Reach Reach1 Reach2 Reach3 Reach4   

Length (km) 25.97 25.88 2.96 15.05   

4.2.  Hybrid HEC-HMS-ANN model 

The number of hidden layers and the number of neurons in each hidden layer in the Encoder-Decoder 

LSTM network architecture are determined by trial-and-error on the training-correction dataset, loss 

function value. The goodness of the model is measured using the mean square error (MSE). The Google 

Colab platform is used for model training. 

The model named 20-20-20-1, which consisting of 20 neurons on the input layer, 2 hidden layers 

with 20 neurons on each layer, and 1 output layer with 1 neuron, was selected as the working model. 

The graph of the loss function or loss function MSE (on normalized data) from the training process is 

shown in Figure 9. 

 

Figure 9. The loss-epochs error value of the model training process. 

Figure 10 shows the hybrid model results for flood #24 at forecast time steps 𝑡+1 to 𝑡+6 hours. The 

increase in forecast quality in steps 𝑡 + 1, 𝑡 + 2 hours is minor because the HEC-HMS model and the 

optimal detection algorithm SCE-UA for Krong H’nang reservoir performed admirably at these time 

intervals. At larger forecasting time steps like 𝑡 +5 and 𝑡 +6 hours, the results demonstrate the hybrid 

model's superiority.  

The model assessment criteria are summarized in Figure 11. The comparison between the results of 

the HEC-HMS model and the HEC-HMS-ANN hybrid model at the forecasting time steps 𝑡 + 1 to 𝑡 +
6 hours shows that the hybrid model significantly improved the accuracy of all indicators, especially in 

the error of total flood volume, an important indicator in flood forecasting for reservoirs. The HEC-

HMS flood peak error tends to be negative, while the hybrid model tends to be positive (ie. 𝑄𝑠𝑖𝑚
𝑝

> 𝑄𝑜𝑏𝑠
𝑝

), 

which is a safety in real-time reservoir operation. 

Table 3 shows the calculation results of the hybrid model increases or decreases relative to the HEC-

HMS model based on the median value compared to their ideal value by equation (16). With the 

synthetic evaluation index KGE, ∆𝐾𝐺𝐸= 16 % at the 𝑡+1 hour forecast step and up to ∆𝐾𝐺𝐸= 69 % at 

the 𝑡+6 hours step. The volume error indicator decreased slightly at step 𝑡+1 hour, ∆𝑣𝑜𝑙 𝑒𝑟𝑟𝑜𝑟= −0,7 %  

and then gradually increased from từ ∆𝑣𝑜𝑙 𝑒𝑟𝑟𝑜𝑟= 3,5 % at step 𝑡+2 hours to ∆𝑣𝑜𝑙 𝑒𝑟𝑟𝑜𝑟= 33 % at step 

𝑡+6 hours. Similar to the other evaluation indices, the hybrid model shows outstanding predictive 

accuracy at the time steps t + 3 hours to t + 6 hours. 
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Figure 10. Flood prediction results for the HEC-HMS-ANN hybrid model #24 at time steps t + 1 to t 

+ 6 for improved forecasting quality compared to the HEC-HMS model. 



 

Figure 11. Summary and compare forecasting results of the HEC-HMS-ANN hybrid model and the 

HEC-HMS model at forecasting steps t+1 to t+6 for different evaluation criteria, including KGE, vol 

error (%), and flood peak error ( %). 

Table 3. Calculation of the increase or decrease in the goodness of the hybrid model for 10 flood events 

(from #24 to #33) at different time steps. 

Criteria Lead time t +1 h t +2 h t +3 h t +4 h t +5 h t +6 h 

KGE 

Best 1 1 1 1 1 1 

HEC-HMS 0,900 0,849 0,820 0,688 0,448 0,166 

Hybrid 0,916 0,865 0,809 0,773 0,753 0,740 

∆𝐾𝐺𝐸 16,0% 10,6% -6,1% 27,2% 55,3% 68,8% 

Vol error 

% 

Best 0 0 0 0 0 0 

HEC-HMS -0,055 -5,92 -13,205 -21,25 -30,27 -37,705 

Hybrid -0,635 2,425 4,140 4,245 4,4 4,365 

 ∆𝑣𝑜𝑙 𝑒𝑟𝑟𝑜𝑟 -0,7% 3,5% 9,1% 17,0% 25,9% 33,3% 

Peak 

error 

% 

Best 0 0 0 0 0 0 

HEC-HMS 1,940 1,300 -2,805 -13,445 -28,030 -41,53 

Hybrid -0,245 6,575 8,665 5,905 4,380 4,440 

∆𝑝𝑒𝑎𝑘 𝑒𝑟𝑟𝑜𝑟  1,7% -7,9% -5,9% 7,5% 23,7% 37,1% 
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5.  Conclusion 
In this study, a hybrid machine-learning hydrological model based on the combination of the HEC-HMS 

physical model and the artificial neural network was built and tested for the Krong H'ang hydropower 

reservoir located in Dak Lak province, the Highlands of Vietnam. The model uses an Encoder-Decoder-

Long-Short-Term-Memory Network architecture and was trained, calibrated, and tested with historical 

rainfall data, measured discharge, and forecasted flow from HEC-HMS at 33 flood events in the period 

from 2016 to 2021. The results show that the HEC-HMS-ANN hybrid model significantly improves 

prediction accuracy when compared to the single HEC-HMS model, especially at longer forecasting 

time steps, as evidenced by ∆𝐾𝐺𝐸 = 16% at the 𝑡 + 1 hour forecast step and ∆𝐾𝐺𝐸 = 69% at the 𝑡 + 6 

hours forecast step. It also demonstrates that the predictive quality of the hybrid model is superior in 

various evaluations, such as flood peak error and flood volume error. 

Because of the strong support of computer technology and large data, the hybrid machine-learning 

hydrological model has enhanced the accuracy of the flood prediction model, particularly over lengthy 

forecast periods. Forecasting ahead of time allows state management organizations, building businesses, 

and people to respond to changing rainfall and flood conditions. 
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