Homogeneous Diophantine Equation of Degree Two in NP-Complete

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Homogeneous Diophantine equation of degree two in NP-complete

Frank Vega \square 숭
CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more unknowns, such that the only solutions of interest are the integer ones. A homogeneous Diophantine equation is a Diophantine equation that is defined by a homogeneous polynomial. Solving a homogeneous Diophantine equation is generally a very difficult problem. However, homogeneous Diophantine equations of degree two are considered easier to solve. Certainly, using the Hasse principle we may able to decide whether a homogeneous Diophantine equation of degree two has an integer solution: we are able to reject an instance when there is no solution reducing the equation modulo p . We prove that this decision problem is actually in NP-complete under the constraints that all solutions contain only positive integers which are actually a residue of modulo a single positive integer. This problem remains in NP-complete even when all the coefficients are non-negative.

2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computation Problems, reductions and completeness

Keywords and phrases complexity classes, boolean formula, completeness, polynomial time

1 Introduction

Let $\{0,1\}^{*}$ be the infinite set of binary strings, we say that a language $L_{1} \subseteq\{0,1\}^{*}$ is polynomial time reducible to a language $L_{2} \subseteq\{0,1\}^{*}$, written $L_{1} \leq_{p} L_{2}$, if there is a polynomial time computable function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that for all $x \in\{0,1\}^{*}$:

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2} .
$$

An important complexity class is $N P$-complete [3]. If L_{1} is a language such that $L^{\prime} \leq_{p} L_{1}$ for some $L^{\prime} \in N P$-complete, then L_{1} is $N P$-hard [1]. Moreover, if $L_{1} \in N P$, then $L_{1} \in$ $N P$-complete [1]. A principal $N P$-complete problem is $S A T$ [3]. An instance of $S A T$ is a Boolean formula ϕ which is composed of:

1. Boolean variables: $x_{1}, x_{2}, \ldots, x_{n}$;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as $\wedge(\mathrm{AND}), \vee(\mathrm{OR}), \rightharpoondown(\mathrm{NOT}), \Rightarrow($ implication $), \Leftrightarrow($ if and only if $) ;$
3. and parentheses.

A truth assignment for a Boolean formula ϕ is a set of values for the variables in ϕ. A satisfying truth assignment is a truth assignment that causes ϕ to be evaluated as true. A Boolean formula with a satisfying truth assignment is satisfiable. The problem $S A T$ asks whether a given Boolean formula is satisfiable [3]. We define a $C N F$ Boolean formula using the following terms:

A literal in a Boolean formula is an occurrence of a variable or its negation [1]. A Boolean formula is in conjunctive normal form, or $C N F$, if it is expressed as an AND of clauses, each of which is the OR of one or more literals [1]. A Boolean formula is in 3-conjunctive normal form or $3 C N F$, if each clause has exactly three distinct literals [1]. For example, the Boolean formula:

$$
\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge\left(\rightharpoondown x_{1} \vee \rightharpoondown x_{3} \vee \rightharpoondown x_{4}\right)
$$

is in $3 C N F$. The first of its three clauses is $\left(x_{1} \vee \rightharpoondown x_{1} \vee \rightharpoondown x_{2}\right)$, which contains the three literals $x_{1}, \rightharpoondown x_{1}$, and $\rightharpoondown x_{2}$. In computational complexity, not-all-equal 3 -satisfiability (NAE-3SAT) is an NP-complete variant of SAT over $3 C N F$ Boolean formulas. NAE-3SAT consists in knowing whether a Boolean formula ϕ in $3 C N F$ has a truth assignment such that for each clause at least one literal is true and at least one literal is false [3]. NAE-3SAT remains $N P$-complete when all clauses are monotone (meaning that variables are never negated), by Schaefer's dichotomy theorem [6]. We know that the variant of XOR $2 S A T$ that uses the logic operator $\oplus(\mathrm{XOR})$ instead of $\vee(\mathrm{OR})$ within the clauses of $2 C N F$ Boolean formulas can be decided in polynomial time [4, 5]. Despite of its feasible computation, we announce another problem very similar to this one but in NP-complete.

- Definition 1. Monotone Exact XOR 2SAT (EX2SAT)

INSTANCE: A Boolean formula φ in $2 C N F$ with monotone clauses using logic operators \oplus and a positive integer K.

QUESTION: Does φ has a truth assignment such that there are exactly K satisfied clauses?

- Theorem 2. EX2SAT $\in N P$-complete.

A homogeneous Diophantine equation is a Diophantine equation that is defined by a polynomial whose nonzero terms all have the same degree [2]. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer [2]. In a general homogeneous Diophantine equations of degree two, we can reject an instance when there is no solution reducing the equation modulo p. We define our finally decision problem:

- Definition 3. ZERO-ONE Homogeneous Diophantine Equation (HDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$ with the unknowns $x_{1}, x_{2}, \ldots, x_{n}$ and a positive integer B.

QUESTION: Does $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$ has a solution $u_{1}, u_{2}, \ldots, u_{n}$ on $\{0,1\}^{n}$?

- Theorem 4. $H D E \in N P$-complete.
- Definition 5. Bounded Homogeneous Diophantine Equation (BHDE)

INSTANCE: A homogeneous Diophantine equation of degree two $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$ with the unknowns $x_{1}, x_{2}, \ldots, x_{n}$ and two positive integers B, M.

QUESTION: Does $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=B$ has a solution $u_{1}, u_{2}, \ldots, u_{n}$ on integers such that $0 \leq u_{i}<M$ for every $1 \leq i \leq n$?

- Theorem 6. $B H D E \in N P$-complete.

2 Proof of Theorem 2

Proof. Let's take a Boolean formula ϕ in $3 C N F$ with n variables and m clauses when all clauses are monotone. We iterate for each clause $c_{i}=(a \vee b \vee c)$ and create the conjunctive normal form formula

$$
d_{i}=\left(a \oplus a_{i}\right) \wedge\left(b \oplus b_{i}\right) \wedge\left(c \oplus c_{i}\right) \wedge\left(a_{i} \oplus b_{i}\right) \wedge\left(a_{i} \oplus c_{i}\right) \wedge\left(b_{i} \oplus c_{i}\right)
$$

where a_{i}, b_{i}, c_{i} are new variables linked to the clause c_{i} in ϕ. Note that, the clause c_{i} has exactly at least one true literal and at least one false literal if and only if d_{i} has exactly one unsatisfied clause. Finally, we obtain a new formula

$$
\varphi=d_{1} \wedge d_{2} \wedge d_{3} \wedge \ldots \wedge d_{m}
$$

where there is not any repeated clause. In this way, we make a polynomial time reduction from ϕ in NAE-3SAT to $(\varphi, 5 \cdot m)$ in EX2SAT. Certainly, $\phi \in N A E-3 S A T$ if and only if $(\varphi, 5 \cdot m) \in E X 2 S A T$, where the new instance $(\varphi, 5 \cdot m)$ is polynomially bounded by the bit-length of ϕ. At the end, we see that EX2SAT is trivially in $N P$ since we could check when there are exactly K satisfied clauses for a single truth assignment in polynomial time.

3 Proof of Theorem 4

Proof. Let's take a Boolean formula φ in $X O R 2 C N F$ with n variables and m clauses when all clauses are monotone and a positive integer K. We iterate for each clause $c_{i}=(a \oplus b)$ and create the Homogeneous Diophantine Equation of degree two

$$
P\left(x_{a}, x_{b}\right)=x_{a}^{2}-2 \cdot x_{a} \cdot x_{b}+x_{b}^{2}
$$

where x_{a}, x_{b} are variables linked to the positive literals a, b in the Boolean formula φ. When the literals a, b are evaluated in $\{$ false, true $\}$, then we assign the respective values $\{0,1\}$ to the variables x_{a}, x_{b} (1 if it is true and 0 otherwise). Note that, the clause c_{i} is satisfied if and only if $P\left(x_{a}, x_{b}\right)=1$ (otherwise $P\left(x_{a}, x_{b}\right)=0$). Finally, we obtain a polynomial

$$
P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(x_{a}, x_{b}\right)+P\left(x_{c}, x_{d}\right)+\ldots+P\left(x_{e}, x_{f}\right)
$$

that is a Homogeneous Diophantine Equation of degree two. Indeed, K satisfied clauses in φ for a truth assignment correspond to K distinct small pieces $P\left(x_{i}, x_{j}\right)$ of the Homogeneous Diophantine Equation of degree two equal to 1 after its evaluation on x_{i}, x_{j}. In this way, we make a polynomial time reduction from (φ, K) in EX2SAT to $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), K\right)$ in $H D E$. Certainly, $(\varphi, K) \in E X 2 S A T$ if and only if $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), K\right) \in H D E$, where the new instance $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), K\right)$ is polynomially bounded by the bit-length of (φ, K). At the end, we see that $H D E$ is trivially in $N P$ since we could check whether an evaluation of $x_{1}, x_{2}, \ldots, x_{n}$ in the solution $u_{1}, u_{2}, \ldots, u_{n}$ on $\{0,1\}^{n}$ is equal to K in polynomial time.

4 Proof of Theorem 6

Proof. This is trivial since we can make a polynomial time reduction from $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), B\right)$ in $H D E$ to $\left(P\left(x_{1}, x_{2}, \ldots, x_{n}\right), B, 2\right)$ in $B H D E$ (i.e. using $M=2$). Due to $H D E$ is in $N P$-complete, then $B H D E$ is in NP-hard. Finally, we know that $B H D E$ is in $N P$. Note that, this problem remains in $N P$-complete even when the coefficients are non-negative.

_- References

1 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
2 David A Cox, John Little, and Donal O'shea. Using algebraic geometry, volume 185. Springer Science \& Business Media, 2006.
3 Michael R Garey and David S Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco: W. H. Freeman and Company, 1 edition, 1979.
4 Neil D Jones, Y Edmund Lien, and William T Laaser. New problems complete for nondeterministic log space. Mathematical systems theory, 10(1):1-17, 1976. doi:10.1007/BF01683259.
5 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1-24, 2008. doi:10.1145/1391289.1391291.

6 Thomas J Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth annual ACM symposium on Theory of computing, pages 216-226, 1978.

