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Abstract. SPEEDY is a family of ultra low latency block ciphers proposed
at TCHES 2021 by Leander et al.. The standard version, SPEEDY-6-192
offers 128-bit security with high encryption speed in hardware. Differen-
tial cryptanalysis proposed in 1990 by Biham and Shamir is one of the
most popular methods of cryptanalysis of block ciphers. It is usually the
first choice to evaluate the security for designers when designing a new
block cipher. The automatic search for various distinguishers based on
SAT and MILP models etc. boosts the cryptanalysis of block ciphers.
However, the performance of the automatic search is not always satisfac-
tory, especially for searching long differential trails of block ciphers with
large state sizes. Hence, we endeavor to accelerate the SAT-based auto-
matic search model for differentials of SPEEDY. In this paper, we give a
3.5-round differential characteristic with the probability of 2−104.83 and
a 4.5-round differential characteristic with the probability of 2−150.15.
Furthermore, by balancing the key recovery and the differential distin-
guisher, we adjust the distinguisher to speed up filtering wrong pairs with
some tricks. Finally we launch a valid 6-round attack for SPEEDY-7-192
with a complexity of 2158.06. We also propose a 5-round attack utilizing a
3.5-round differential distinguisher with the time complexity of 2108.95.

Keywords: SPEEDY · Differential cryptanalysis · Automatic search ·
SAT model

1 Introduction

SPEEDY [9], proposed by Leander et al. at TCHES’21, is a family of ultra low
latency block ciphers which is designed to be fast in CMOS hardware. The ultra
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low-latency 6-bit S-box with a two-level NAND gates tree was introduced to
provide confusion, and the linear layer with the depth of 3 XOR was applied to
provide strong diffusion with branch number 8.

Differential cryptanalysis [3] is one of the most fundamental techniques for
cryptanalysis of block ciphers, which was proposed by Biham and Shamir in
1990 to break the Data Encryption Standard (DES). Differential cryptanalysis
is essential to evaluate the security of block ciphers. And many generalizations
are proposed like truncated differentials [7], impossible differential attack [6,1],
the boomerang attack [19] and the rectangle attack [2] etc.

Searching for a good differential characteristic is one of the most important
parts to carry out a differential attack. In [11], Matsui proposed a depth-first
branch-and-bound searching algorithm to identify the optimal differentials with
the maximum probability of block ciphers. The advantage of this algorithm is
enhanced by taking in the customized optimization for the specific cipher. In
recent years, tools for solving the basic mathematical method have been used to
search distinguishers in cryptanalysis. The Boolean satisfiability problem (SAT)
is one of the important basic problems on which the automatic search models
are based, it is NP-complete.

The efficiency of the automatic search model is one of the important problems
we have to face, although some works aimed at improving the efficiency of the
automatic search model proposed, it is still a disturbing problem. The runtime of
solving the automatic search model mainly depends on the solvers. It has been
experimentally shown that minimizing the number of inequalities in a MILP
model did not always minimize the runtime [14], as well there are a few works
considering the acceleration of the automatic search based on SAT method. The
automatic search for bit-oriented block ciphers is more difficult for both methods,
because more variables are introduced for each state and the linear layer mixes
the variables fastly. It is challenging that building an efficient automatic search
model for SPEEDY family, on account of 192-bit suggested block size.

Our Contributions. In this paper, we deliberate on the security of SPEEDY-r
-192 with reduced rounds using differential attack. We unveil some new distin-
guishers, their structural properties, and key recovery attacks on SPEEDY-r-192
which were not reported before. Table 1 gives a summary of attacks on SPEEDY
till date.

Firstly, we proposed an accelerated automatic search model for SPEEDY-r-192
based on SAT method. Due to a large internal state of 192 bit and the fast dif-
fusion property, it is hard to exhaust all the values of the bit-level state for
long rounds. Thus it seems difficult to build an effective automatic search model
for SPEEDY-r-192. In this paper, we revisit the constraints of the upper bound,
which is called the Sequential Encoding Method [15], and reduce the number
of auxiliary variables introduced in the clauses by utilizing the properties of
the weight of the probability in differentials for SPEEDY-r-192. In this way,
we build an effective automatic model for searching the differential trails of
SPEEDY-r-192. To evaluate the probability of the differential distinguisher more
precisely, we search for the clustering of differentials with the same input and out-
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put differences. We get the longest differential distinguishers for SPEEDY-r-192,
and the runtime is practical and much lower than the previous method.

Secondly, We make a balance in the probability of the differential distin-
guisher and the non-active bits in the plaintext state that can be used to filter the
wrong pairs. The balance strategy speeds up filtering the pairs that do not sat-
isfy the differential distinguisher for SPEEDY. Since the differential distinguisher
with maximum probability does not necessarily lead to the most effective key
recovery attack, the truncated differentials in the extended rounds also impact
the complexity of the differential cryptanalysis. This case has been discussed
in some rectangle attacks [20,12,5]. Therefore, we adjust the input difference of
the distinguisher and add some conditions to control the difference propagation
in the extended rounds to make there are some bits with zero difference in the
plaintext. The zero difference in the plaintext can filter the wrong pairs in ad-
vance in the data collection phase, which greatly reduces the time complexity in
key recovery phase.

With these techniques, we launch a 6-round key-recovery attack for SPEEDY-7
-192 within the claimed security, which is the longest attack on SPEEDY-r-192
as far as we know. We also proposed a 5-round attack with lower complexity.
The results are shown in Table 1.

Table 1: Summary of cryptanalytic results on SPEEDY.
Distinguishers

Method Round Data Time Memory Ref.

Differential and linear 2 239 239 - [9]
3 269 269 - [9]

Cube 2 214 214 - [13]
Cube 3 213 213 - [13]

Differential 4.5 2150.15 2150.15 - Sect. 4.1
Differential 3.5 2104.83 2104.83 - Sect. 5.1

Key recovery
Integral 3 217.6 252.5 225.2 [13]

Differential 5 2108.91 2108.95 2108.91 Sect. 4
Differential 6 2158.04 2158.06 2158.04 Sect. 5

2 Preliminary

2.1 Description of SPEEDY

SPEEDY [9] is a family of ultra-low latency block ciphers designed by Leander
et al. at TCHES 2021, the designers use SPEEDY-r-6ℓ to differentiate all the
variants, where 6l denotes the block and key size, and r indicates the number of
iterated rounds.



4 Qingyuan Yu, Keting Jia∗ , Guangnan Zou, and Guoyan Zhang

The internal state is viewed as an ℓ × 6 binary matrix, and we use x[i,j] to
denote the bit located at row i, column j of the state x, where 0 ≤ i < ℓ and
0 ≤ j < 6.

The default block and key size for SPEEDY is 192, i.e. ℓ = 32. And this is the
only block size we considered in this paper, the designers claimed the security for
this instance with iterated rounds 5, 6 and 7. The 5-round version SPEEDY-5-192
has a security level of 2128 time complexity with 264 data complexity as restric-
tion, SPEEDY-6-192 and SPEEDY-7-192 can achieve 128-bit and 192-bit security
levels, respectively. We pay attention to the differential cryptanalysis of the de-
fault version SPEEDY-r-192.

We review the details of the round function for encryption of SPEEDY-r-192.
The round function consists of the following five different operations: SubS-
box(SB), ShiftColumns (SC), MixColumns (MC), AddRoundConstant
(ACi

) and AddRoundKey (AKi
). For encryption, the iterated round function

except the last is defined as

Ri = ACi ◦ MC ◦ SC ◦ SB ◦ SC ◦ SB ◦Aki , with 0 ≤ i ≤ r − 2.

The round function in the last round is

Rr−1 = Akr
◦ SB ◦ SC ◦ SB ◦Akr−1

.

The last round omit the linear layer and constant addition, and append an extra
key addition. Here, we introduce the round operations in the following.
SubSbox(SB): The 6-bit S-box S (seen Table 2) is applied to each row of the
state, i.e. for 0 ≤ i < 32,

(y[i,0], y[i,1], y[i,2], y[i,3], y[i,4], y[i,5]) = S(x[i,0], x[i,1], x[i,2], x[i,3], x[i,4], x[i,5]).

Table 2: The S-box S in SPEEDY
s0s1 s2s3s4s5

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. 08 00 09 03 38 10 29 13 0c 0d 04 07 30 01 20 23
1. 1a 12 18 32 3e 16 2c 36 1c 1d 14 37 34 05 24 27
2. 02 06 0b 0f 33 17 21 15 0a 1b 0e 1f 31 11 25 35
3. 22 26 2a 2e 3a 1e 28 3c 2b 3b 2f 3f 39 19 2d 3d

ShiftRows(SC): The j-th column of the state is rotated upside by j bits.

y[i,j] = x[i+j,j], 0 ≤ i < 32, 0 ≤ j < 6.

MixColumns(MC): For SPEEDY-r-192, a cyclic binary matrix M(32× 32) is
multiplied to each column of the state. Use x[j] to denote the input of the j-th
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column, and use y[j] to denote the output of the column transform. The column
transform y[j] = M · x[j] is

y[j] = x[j] ⊕ (x[j] ≪ 1)

⊕ (x[j] ≪ 5)⊕ (x[j] ≪ 9)⊕ (x[j] ≪ 15)⊕ (x[j] ≪ 21)⊕ (x[j] ≪ 26),

where x[j] ≪ t means the column x[j] rotated upside by t bits, i.e., x[i,j] =
x[i+t,j], ∀ 0 ≤ i < 32.
AddRoundKey(Akr): The 192-bit round key kr is XORed to the internal state,
as:

y[i,j] = x[i,j] ⊕ kr[i,j] , 0 ≤ i < 32, 0 ≤ j < 6.

AddRoundConstant(Acr): The 192-bit constant cr is XORed to the whole of
the state.

y[i,j] = x[i,j] ⊕ cr[i,j] , 0 ≤ i < 32, 0 ≤ j < 6.

Since AddRoundConstant does not alter the validities of attacks in this paper,
the constants cr[i,j] are not introduced.
Key Schedule: The algorithm receives a 192-bit master key and initializes it as
the subkey k0. Then a bit permutation PB is used to compute the next round
subkey, i.e.

kr+1 = PB(kr).

For more details of SPEEDY, please refer to [9].

2.2 Observations on Differential Properties of SPEEDY

For the SB operation with the input difference α and the output difference
β, and differential pair (α, β) satisfies the equation 1. We have the following
observations according to the Differential Distribution Table.

S(x)⊕ S(x⊕ α) = β. (1)

Observation 1 For given α = 100000 and β = *****0(β ̸= 0), the probability
of the propagation Pr{α SB−−→ β} = 3/4 ≈ 2−0.42, and the number of β is 15,
where ′∗′ means the unknown bit value. Each differential pair (α, β) satisfies the
equation 1.

Observation 2 For given α = 001000 and β = 0*****(β ̸= 0), the probability
Pr{α SB−−→ β} = 15/16 ≈ 2−0.09, and the number of β is 17, where ′∗′ means the
unknown bit value. The differential pair (α, β) satisfies equation (1).

Observation 3 For given α = **0***(α ̸= 0) and β = 010000, the probability
Pr{α SB−−→ β} ≈ 2−0.54, where ′∗′ means the unknown bit value, and the differ-
ential pair (α, β) satisfies equation (1). Given β = 010000, when α = 0***** or
α = *****0, the probability becomes 2−1 or 2−0.67.

For each column of MC operation, we have the following observation:
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Observation 4 Let y be a column of the input of the inverse of MC and the
corresponding output be x, i.e. y = M · x. We simply consider the output form
x, where y has the form yt ̸= 0 (t = i, j) and yt = 0 (t /∈ {i, j}), yt denotes the
t-th bit of y.

– j = i+ 1, the Hamming weight H(x) is 14, when i = 0, x =0x4CD019F4;
– j = i+ 2, the Hamming weight H(x) is 14, when i = 0, x =0x6AB8150E;
– j = i+ 3, the Hamming weight H(x) is 16, when i = 0, x =0x798C1373;
– j = i+ 4, the Hamming weight H(x) is 12, when i = 0, x =0xF016104D;
– j = i+ 5, the Hamming weight H(x) is 15, when i = 0, x =0xB4DB11D2.

2.3 Complexity Analysis of the Differential Attack

Let ∆in → ∆out be a r-round differential characteristic of an algorithm E(x, k),
which is a Fn

2 × Fm
2 → Fn

2 mapping, the couple of (∆in, ∆out) should satisfy

Pr{E(x, k)⊕ E(x⊕∆in, k) = ∆out} > 2−n

for x ∈ Fn
2 and any fixed k ∈ Fm

2 .
The probability is calculated as the sum of probabilities regarding all trails

sharing the same input and output differences with the differential [8]. Denote
the probability of the r-round differential distinguisher as p0 and the number of
plaintext (or ciphertext) pairs utilized in the attack as ND. Then under the right
key guess, the counter memorizing the number of pairs satisfying the differential
distinguisher follows a binomial distribution of parameters (ND, p0). On the
other side, suppose that the probability of a pair fulfilling the differential under
a wrong key guess is p1. Consequently, the counter follows a binomial distribution
of parameters (ND, p1). We set a threshold τD for the attack, if the counter of
the right pairs is no less than τD, the key guess will be accepted.

There are two types of errors which are always need to face in the hypothesis
test, which are denoted by α, the non-detection error probability, and β, the
false alarm error probability. α and β can be got from the formulas in [4].

Then the total time complexity of the differential cryptanalysis T can be
departed into three parts, denoted by T = T1 + T2 + T3. T1 is the number of
encryptions to prepare the necessary plaintext and ciphertext pairs which lead
to the right pairs passing the distinguisher. We can estimate T1 by N times of
encryption, where N is the number of plaintexts (ciphertexts) we chose, which
corresponds to the data complexity.

Time complexity T2 denotes the average complexity needed to decide whether
a pair satisfy the distinguisher under our key guess. For the ND pairs we utilized
in the attack, use TE to denote the time for one encryption, if we need time TF

to determine whether a pair satisfy the distinguisher or not on average. Then
the time complexity can be estimated by

T2 =
TF

TE
·ND.
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After the key recovery phase, there will be 2m · β keys remaining in the theory.
Therefore, we expected

T3 = 2m · β · (1− 2−n)

encryptions to recover the entire master key. And the success probability of the
attack is equal to 1− α.

2.4 Automatic Searching Model Based on SAT Problem

The Boolean Satisfiability (SAT) problem studies the satisfiability of a given
Boolean formula, it is said satisfiable if there exists an assignment of Boolean
values to variables so that the formula is evaluated to be True.

Conjunctive Normal Form (CNF) is a generic representation of SAT problem.
The formula is expressed as conjunction (∧) of one or more clauses, where a
clause is a disjunction (∨) of many Boolean variables (possibly negated). The
CNF encodings for basic operations in cryptographic primitives are introduced.
In this section, we use αi(0 ≤ i < n) to denote the i-th element of the n-bit
vector α, α0 stands for the most significant bit.

-Building constraints for non-probabilistic models. For the linear op-
erations in cryptographic primitives, we can also build the clauses of the SAT
model by the same method of building clauses for S-boxes without introducing
auxiliary variables, in this section, we just list the clauses for some basic opera-
tions.
Clauses for XOR operation. For a n-bit XOR operation with two input dif-
ferences α and β, and the output difference is denoted by γ. The differential
α⊕β = γ holds if and only if the values of α, β and γ validate all the assertions
in the following.

αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1

αi ∨ βi ∨ γi = 1
αi ∨ βi ∨ γi = 1

 0 ≤ i ≤ n− 1

Clauses for COPY operation. For the n-bit COPY operation with input
difference α and output difference β. The differential β = α holds if and only if
the values of α and β validate all the assertions in the following.

αi ∨ βi = 1
αi ∨ βi = 1

}
0 ≤ i ≤ n− 1

For differentials, the clauses of COPY operation α = β can be also applied to
shifting operations.

-Building constraints for S-box. The propagations of differences and lin-
ear masks for S-box operations are probabilistic. Use an s-bit S-box for example,
according to the method in [17], let (I0, I1, . . . , Is−1) denote the variables which
indicate the input difference, and (O0, O1, . . . , Os−1) denote the output differ-
ence, introduce several variables ρ0, ρ1, . . . , ρh−1 to denote the weight of the
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opposite number of the binary logarithm of the probability. Because the SAT
problem is oriented to binary variables, the number of auxiliary variables depends
on the weight of the probability. With these variables, we can define a (2s+h)-bit
Boolean function f(z), where z = (I0, I1, . . . , Is−1, O0, . . . , Os−1, ρ0, . . . , ρh−1),
if (I0, . . . , Is−1) → (O0, . . . , Os−1) is a possible propagation with the probabil-
ity weight w0 · ρ0 + w1 · ρ1 + · · · + wh−1 · ρh−1, then f(z) = 1, else f(z) = 0.
Then we can get a set of Boolean equations by reformulating the f(z) as the
product-of-sum representation

f(z) =
∧

c∈F2s+h
2

(
f(c) ∨

2s+h−1∨
i=0

(zi ⊕ ci)
)
,

where c = (c0, c1, . . . , c2s+h−1), after getting the Boolean equations, we can
simplify the expression utilizing some openly available programs like Logical
Friday 7, and yield a smaller set of clauses.

-Sequential encoding method for constraining the upper bound.
When we aim at r-round differential trails, denote the auxiliary variables stand
for the probability for the j-th S-box in the i-th round as ρ

(i,j)
l , where 0 ≤ i ≤

r − 1, 0 ≤ j ≤ n − 1 and 0 ≤ l ≤ h − 1. The weight equals to the opposite
number of the binary logarithm of the probability of the differential trail should
be

∑r−1
i=0

∑n−1
j=0

∑h−1
l=0 wl · ρ(i,j)l . In theory, if we want to constrain the solution

range with the prospective value ω as the weight of the trail, our model should
add the additional constraint

r−1∑
i=0

n−1∑
j=0

h−1∑
l=0

wl · ρ(i,j)l ≤ ω.

However, all the variables in the SAT are binary, it is unfeasible to handle the
decimal and the integer part at the same time. So we convert the bound into
several parts with different decimal weights and handle the part with differ-
ent weights separately. For example, let the ρ

(i,j)
h−1 denote the part with deci-

mal weight for each S-box, and the other variables denote the part with in-
teger weight. Then the constraints for the upper bound can be rewritten as∑r−1

i=0

∑n−1
j=0

∑h−2
l=0 ρ

(i,j)
l + wh−1 ·

∑r−1
i=0

∑n−1
j=0 ρ

(i,j)
h−1. The objective function of

the SAT problem consists of the following two inequalities.

r−1∑
i=0

n−1∑
j=0

h−2∑
l=0

ρ
(i,j)
l ≤ ωI ,

r−1∑
i=0

n−1∑
j=0

ρ
(i,j)
h−1 ≤ ωD (2)

where ωI and ωD are two non-negative integers, and ω = ωI + wh−1 · ωD.
These two restrictions in 2 meet the form

∑n−1
i=0 ui ≤ k, where k is a non-

negative integer. If k = 0, this constraint is equivalent to the following n Boolean
expressions:

ūi = 1, 0 ≤ i ≤ n− 1.

7https://web.archive.org/web/20131022021257/http://www.sontrak.com/
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Else if k > 0, according to the method in [10], which is called sequential
encoding method. we introduce (n−1) ·k auxiliary Boolean variables vi,j(0 ≤
i ≤ n− 2, 0 ≤ j ≤ k − 1), and use the following clauses to build the constraints
for

∑n−1
i=0 ui ≤ k:

u0 ∨ v0,0 = 1
v0,j = 1, 1 ≤ j ≤ k − 1
ui ∨ vi,0 = 1
vi,0 ∨ vi,0 = 1
ui ∨ vi−1,j−1 ∨ vi,j = 1
vi−1,j ∨ vi,j = 1

}
1 ≤ j ≤ k − 1

ui ∨ vi−1,k−1 = 1

 1 ≤ i ≤ n− 2

un−1 ∨ vn−2,k−1 = 1

Using the model shown above, we build the constraints of the SAT problem for
searching differential characteristics, and we utilize CryptoMinisat5 [16] as the
solver with parameters set as shown in Sect. 3.

3 Searching for Good Differential Trails for SPEEDY

It requires searching a space of exponential size in the number of Boolean vari-
ables to solve the SAT problem. We believe that the size of the problem needed
to be solved is one of the most important factors affecting the runtime of the
SAT based automatic search model. In this section, we try to build the automatic
search model for the differential trails of SPEEDY-r-192 with as few variables as
possible based on the SAT model and discuss how to solve the model with as
few as possible running times.

3.1 Improved Automatic Searching Model for SPEEDY

For SubSbox operation of SPEEDY-r-192, the entries in the DDT of S-box
has six possible evaluations, which are 0, 2, 4, 6, 8, and 16, with corresponding
differential probabilities in the set {0, 2−5, 2−4, 2−3.415, 2−3, 1}. When we use the
automatic search model proposed in [17,18], six auxiliary Boolean variables are
required for each S-box, and O((n− 1) · k) auxiliary Boolean variables are also
needed according to the sequential encoding method in Sect. 2.4 to build the
constraints for the upper bound of the probability for the distinguishers, where
n is the number of variables which denote the probability for each S-box and
k is the upper bound for the probability of the whole distinguisher. In order to
descend the scale of the auxiliary variables, we introduce four Boolean variables
ρ0, ρ1, ρ2, ρ3, let p denote the probability of the possible differential propagation,
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then we build the constraints for the variables as follows:

ρ0||ρ1||ρ2||ρ3 =



1110, if p = 2−5

0110, if p = 2−4

0011, if p = 2−3.415

0010, if p = 2−3

0000, if p = 1

In order to build the constraints for the upper bound of the probability of the
whole distinguisher with as few auxiliary variables as possible, we depart the
objective function of the SAT problem into three parts, which are:

r−1∑
i=0

31∑
j=0

2∑
l=0

ρ
(i,j)
l ≤ ωI ,

r−1∑
i=0

31∑
j=0

ρ
(i,j)
2 ≤ ωS and

r−1∑
i=0

31∑
j=0

ρ
(i,j)
3 ≤ ωD.

Where ωI , ωS and ωD are non-negative integers, and 0 ≤ i ≤ r − 1, 0 ≤ j ≤
31. The prospective value for the weight of the trail ω can be represented by
ω =

∑r−1
i=0

∑31
j=0

∑2
k=0 ρ

(i,j)
l + 2 ·

∑r−1
i=0

∑31
j=0 ρ

(i,j)
2 + 0.415 ·

∑r−1
i=0

∑31
j=0 ρ

(i,j)
3 .

It is obvious that the number of S-boxes in the trail can be represented as∑r−1
i=0

∑31
j=0 ρ

(i,j)
2 , so we can follow the steps in Sect. 3.2 to solve the model.

The constraints for ShiftRows, MixColumns and AddRoundKey have
nothing to do with the probability of the trail, so we do not need to make
addtional constraints on these operations.

3.2 Process of Solving the Model

p1 =
∑r−1

i=0

∑31
j=0

∑2
k=0 ρ

(i,j)
k , p2 =

∑r−1
i=0

∑31
j=0 ρ

(i,j)
2 and p3 =

∑r−1
i=0

∑31
j=0 ρ

(i,j)
3

denote the summation of partial weights respectively. Suppose the optimal trail
we found has the prospective value for the weight of the probability ω = a+ 2 ·
b+0.415 · c, i.e. p1 = a, p2 = b and p3 = c, if the number of active S-boxes is not
less than this trail, the trails with higher probability must satisfy the conditions
of the parameters as shown below, the trivial cases p1 ≤ a and p3 ≤ c are ruled
out.

Table 3: Possible value combinations of p1, p2 and p3

p1 p2 p3

1 a+ n b c− ⌈ n
0.415

⌉

2 a− n b c+ ⌊ n
0.415

⌋

3 ≤ a− k + n b+ 1 ≤ c− ⌈n−k+2
0.415

⌉

4 ≤ a− k − n b+ 1 ≤ c+ ⌊n+k−2
0.415

⌋
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The case where the number of active S-boxes is greater than b+1 can be dealt
with inductively. And we notice that although there are many possible scenarios
theoretically, we need not test all of them, because the parameter p1 usually
increases with the number of active S-boxes. So we proposed a heuristic method
to search for the differential trail with optimal probability. Firstly we search
for the minimized number of active S-boxes, i.e. we set the objective function
to minimize the parameter p2, suppose the obtained minimum is b. Secondly,
we run the solver again with the objective function to minimize the parameter
p1 with the constraint p2 = b and suppose the minimize objective function is
a, then with the constraints p1 = a and p2 = b, we set the objective function
to minimize the parameter p3, and denote the value is c. Finally, we test the
possible value combinations of p1, p2 and p3 in Table 3 to ensure the probability
of the trail we found is optimal, if it is not, repeat the test.

The minimum of the parameter p1, p2 and p3 have already constrained the
candidate of the test, so we just need to repeat the test few times to ensure the
trail is optimal. The size of the auxiliary variables we introduced is O(r · (3ωI +
ωS +ωD)), which is several times less than the size of the problem that we build
constraints with 6 auxiliary variables for each S-box. The improvement of the
runtime is significant, the average time of solving our model to search for the
4.5-round distinguisher once is about 3 hours, as well the time for solving the
model normally once to search for the 4.5-round distinguisher is over 24 hours.

4 Differential Cryptanalysis on 6-round SPEEDY

In this section, we give differential cryptanalysis of SPEEDY-7-192 to achieve the
rounds as long as possible. According to the round function of SPEEDY, we first
select the differential distinguisher with N + 0.5 rounds which are suitable for
the key-recovering phase with the optimal probability and mount a 1 + N + 1
key-recovery attack under chosen-ciphertext ability. In this section, we show that
we can achieve a 6-round attack for SPEEDY-7-192 with the time complexity of
2158.06 and data complexity of 2158.04.

4.1 The 4.5-round Differential Distinguisher

Because of the rapid propagation of the truncated differential trails of SPEEDY,
it will cost lots of time complexity on filtering out the wrong pairs which do
not conform with the differential trail in the key recovery phase. However, there
is just one ShiftColumns(SC) operation in the last round of round-reduced
SPEEDY-7-192, the truncated propagation of the second SubBox(SB) operation
can be easily handled because the 6-bit non-zero difference of each S-box only
leads to 6 active bits in the state of ciphertexts. So we search for an optimal 4.5-
round differential trail as the distinguisher and launch a 6-round key recovery
attack on SPEEDY-7-192 under chosen-ciphertext ability.

According to the method in Sect. 3.2, firstly we find out that the minimum
number of active S-boxes of 4.5-round differential trails for SPEEDY is 43, and then
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we search for the optimal differential distinguishers with 43 active S-boxes and
get the maximum probability of 4.5-round differential path is 2−150.15. Finally
we resolve the automatic model several times with the constraints for adjusted
parameters to ensure that there are no trails with 44 or 45 active S-boxes have
probability higher than 2−150.15. The 4.5-round differential path we got from the
SAT solver is shown in Figure 1.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC SB SC MC

round 4

SB SC

none

nonzero difference zero difference

none

Fig. 1: The 4.5-round differential distinguisher for SPEEDY-r-192

4.2 Speed up Filtering Wrong Pairs by Optimizing the Distinguisher

We launch a 6-round key recovery attack based on the 4.5-round differential path
by extending 1 round at the beginning and 0.5 round at the end.

The chosen-ciphertext attack with data structure is applied to reduce the
time complexity. We choose 2s structures of size 2t (t denotes the number of
active bits in the differences of ciphertext). There are about 22t−1 pairs for each
structure. Let p be the probability of the differential distinguisher we found. We
choose enough ciphertexts such that there are about 2s+2t−1−t × p ≥ 1 pairs
satisfying the output of the differential distinguisher. Hence, the data complex-
ity is 2s+t. We need to guess the subkeys for the 2s+2t−1 pairs, which plays a
dominant role in the time complexity of the key recovery phase. Therefore, we
adjust the input difference of the distinguisher and add some conditions to con-
trol the difference propagation in the extend round to make some bits in the
plaintext with zero difference. The zero difference in the plaintext can remove
some pairs not satisfying the truncated differential in the data collection phase,
which reduces the time complexity of the key recovery phase.

Here, we describe the methods to make the differences of some bits of plain-
text pairs become zero. The differential distinguisher with the maximum prob-
ability does not necessarily lead to the most effective key recovery attack, the
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truncated differentials in the extended rounds also impact the complexity of
the differential cryptanalysis. For partial decryption, the operation MC−1 can
spread one active S-box at the beginning of the distinguisher to 19 active S-boxes,
which can diffuse to the whole plaintext state (all the 32 S-boxes are active) after
partial decryption through SC−1 ◦ SB−1. But according to the Observation 4,
two active S-boxes at the beginning of the distinguisher can lead to less active
S-boxes after propagation through MC−1, which make there are some bits with
zero-difference can be used to filter wrong pairs in the data collection phase.
Hence we proposed the trade-off strategy to balance the time complexity.

As shown in Figure 3, we adjust the differential propagation in round 1, such
that the two active S-boxes at the beginning of the differential distinguisher
can lead to 12 active S-boxes after propagation through MC−1. The probability
of the altered differential characteristic is 2−155.735. And the probability of the
differential distinguisher is 2−155.2, which is recalculated by multi differential
trials. The altered distinguisher can generate 2 rows with zero difference in the
state of plaintext, which are row 8 and row 9.

Meanwhile, considering the differences in rows 19 to 26 of the plaintexts,
although these rows may be active after propagating through SC−1 ◦SB−1, the
actual number of active S-boxes of the first SB operation the rows 19 to 26 of
round 0 depends on the output difference of the rows 18 and 24 of the second
SB layer in round 0. So we exhaust all the possible differences of these active
S-boxes propagating backward through the SB−1 ◦SC−1 ◦SB−1 operation, and
find that the probability of the situations that the differences in rows 21 to 23
of the plaintext state are all zero is 2−1.415, which can be viewed as a part of the
truncated differential.

Up to now, we get the altered distinguisher with zero difference in rows 8, 9,
21, 22 and 23 in plaintexts and zero difference in position 3 of the 6-th column
in ciphertexts. The 4.5-round differential can generate plaintexts by partial de-
cryption with zero differences in rows 9 to 10 and 21 to 23 of the plaintext state
with the probability 2−155.2−1.415−0.42 = 2−157.04. And this distinguisher leads
to 30-bit filter in the data collection phase.

SB−1 SC−1 SB−1

pr=2−1.415

19
20
21
22
23
24
25
26

19
20
21
22
23
24
25
26

18
19
20
21
22
23
24
25
26

18
19
20
21
22
23
24
25
26

none none

none

Fig. 2: Improved pre-filtering phase for the head of the distinguisher.

According to the truncated differential structure, we choose 2s structures,
each including 229 ciphertexts by traversing the active bits with fixed random
values for non-active bits and query the corresponding plaintexts. Let the bits
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with the zero-difference of the plaintext as the index to obtain the pairs. There
are about 2s+29×2−1−30 = 2s+27 pairs remaining.

4.3 Key Recovery of 6-round SPEEDY-192

Some precomputation tables are used to reduce the time complexity in the key
recovery phase. Use the notations with the meaning in equation (1), we build a
hash table H indexed by (α, β) to store the values (x, SB(x)). For given α =
4, 5, 0x20, there are about 21, 27 and 23 values of β, respectively. For each active
row of the ciphertext pairs, we compute the output difference β of each pair, and
removing the pairing which can not generate the given input difference α. There
are about 2s+27 × 222.1−29 = 2s+20.1 pairs remaining. Then look up the table H
to get the value S(x) by the index, and deduce the key bits involved in this row.
So in the last key addition, we deduce the key bits involved in rows 3, 16, 21, 23
and 30 of the state of ciphertexts by looking up tables. And we get 2s+20.1 pairs
each corresponding to 27.48 30-bit keys.

As the key schedule used in SPEEDY family is linear, use the key bit in the
set 0 to 191 of the zero-th round key k0 to denote the obtained 30-bit key in the
last round, seen in Table 4.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC SB SC MC

round 4

SB SC SB SC MC

round 5

SB SC SB

none

nonzero difference uncertain zero difference

none

Fig. 3: 6-round attack for SPEEDY-7-192.

Then we deduce the key bits involved in row 18 after SC ◦ SB operation of
round 0. We first deduce the key bits involved in row 20 in the plaintext state,
because the key bit of position 120 is known, there are about 2s+20.1 pairs each
corresponding to 27.48 35-bit keys after looking up the hash table H to deduce
the 5 key bits left. Then compute the key bits involved in row 19 by looking
up the hash table, we get 2s+20.1 pairs, which correspond to 27.48 40-bit keys.
Deduce the key bits involved in the 18-th row by table lookups to obtain 2s+20.1
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Table 4: The deduced key bits involved in the last key addition
row key guess
3 138 91 44 189 142 95
16 120 73 26 171 124 77
21 54 7 152 105 58 11
23 66 19 164 117 70 23
30 12 157 110 63 16 161

pairs, which are corresponding to 28.48 45-bit keys. Then we guess the unknown
3 bits values in row 18 of the state after the first SC and check the known output
difference. Up to now we obtain 2s+20.1 pairs, which are corresponding to 25.48

46-bit key.
For the other rows, we just need to calculate the key bits that are not in-

volved in the positions that we have obtained, the time complexity is much lower
than computing the key bits involved in the first three rows as shown above. For
example, we only need to guess the key bits involved in rows 13 to 17 when filter-
ing with row 13 after the second SB layer. The time complexity of each looking
up hash table is approximate to the looking up S-box. The time complexity is
about (2s+27 + 2s+20.1 × (8 + 26))× 1/32× 1/12 ≈ 2s+19.

Each guess determines a 168-bit key, and we exhaust the remaining key bits.
By the complexity cryptanalysis in Sec. 2.3, we set s = 129.04. Under the right
key guess, 2s+2×29−1−29 × 2−157.04 = 1 pair is expected in content with the 4.5-
round differential. About 2s+27−29−162 = 2−35.38 pairs will validate the input
and output differences of the 4.5-round distinguisher under a wrong 168-bit key
guess. According to the formulas, we have α < 0.2 and β < 2−40, hence the
success probability is PS = 1 − α > 80% and the total time complexity of the
6-round attack is given by

2129.04+29 + 2129.04+19 + 2192 · 2−40 · (1− 2−192) = 2158.06.

The data complexity of the 6-round attack is 2s+29 = 2158.04.

5 Differential Cryptanalysis of 5-round SPEEDY

5.1 Speed up Filtering Wrong Pairs with a 3.5-round Differential
Distinguisher

In this section, we give an improved 3.5-round differential for SPEEDY-r-192 and
mount a 5-round differential attack.

The searching method of a 3.5-round differential is the same as that used
for searching the 4.5-round differential distinguisher of SPEEDY-r-192. Firstly
we search for the differential characteristic with the minimum number of active
S-boxes. Then we alter the constraints for other parameters and find the optimal
differential trails with the maximum probability. We find out that the minimum
number of active S-boxes of the 3.5-round is 31, and the optimal 3.5-round
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differential trail with the probability of 2−104.83 got from the solver is shown in
Figure 4.

The differential 000010 SB−−→ 000100 and 000010 SB−−→ 001000 for S-boxes of
SPEEDY both has probability 2−3. So we reduce the number of active S-boxes
in the last AK operation from 8 to 5 without changing the probability. And
following the idea in Sect 4.2, we just alter the differential propagation in the
first round to get a distinguisher with two non-active S-boxes in rows 9 and 10
of the plaintexts. The detail of the altered differential distinguisher is shown
in Figure 5, and the probability of the trail is 2−106.66. After searching for all
the differential characteristics with the same input and output difference as well
as no more than 35 active S-boxes, the probability of the differential trail is
adjusted to 2−105.7.

In order to increase the number of zero-difference bits in the plaintexts
which are used to remove more wrong pairs in the data collection, we made
a few adjustments to the above distinguisher. Because the active bits in rows
8, 11 and 27 after the first SB layer originate from three different S-boxes
in the second SB layer. According to Observation 3, the differential proba-
bility Pr{**0*** SB−−→ 010000} = 2−0.54, Pr{0***** SB−−→ 010000} = 2−1,
and Pr{*****0 → 010000} = 2−0.67. And these three S-boxes are disjoint in
the truncated differential. Such that the probability of the truncated differen-
tial that the difference in rows 8, 11 and 27 of plaintext state are all zero is
2−0.54−1−0.67 = 2−2.21.

The 3.5-round differential can generate plaintexts by partial decryption with
zero differences in rows 8 to 11 and 27 of the plaintexts, having the probability
2−105.7−2.21 = 2−107.91.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC

none

nonzero difference zero difference

none

Fig. 4: The 3.5-round differential distinguisher for SPEEDY-r-192.
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5.2 Key Recovery of 5-round SPEEDY-r-192

We launch a 5-round differential attack by extending 1 round at the beginning of
the 3.5-round differential and appending 0.5 round. According to Observation 2,
we choose the ciphertexts with output differences in the form 0***** instead
of ****** at rows 13 and 21, which can generate the input difference 001000
effectively. There are 28 active bits seen in Figure 5.

Use the same method in Sect. 4.3, we build a hash table indexed by input
and output differences (α, β) to store the values (x, SB(x)) for S-box. For given
α = 8, 12, there are about 17, 27 values of β, respectively.

We choose 2s structures, each including 228 ciphertexts by traversing the
active bits with fixed random values for non-active bits and query the corre-
sponding plaintexts. Let the bits with the zero-difference of the plaintext as the
index obtain the pairs. There are about 2s+28×2−1−30 = 2s+25 pairs remaining.
For each active row of the ciphertext pairs, we compute the output difference
β of each pair, and remove the pairing which can not generate the given input
difference α. There are about 2s+25×222.44−28 = 2s+19.44 pairs remaining. Then
look up the table H to get the value S(x) by the index, and deduce the key bits
involved in these rows. Hence, we deduce the key bits of k6 involved in rows 1, 6,
10, 13 and 21. There are about 2s+19.44 pairs each corresponding to 25.56 30-bit
keys.

round 0

SB SC SB SC MC

round 1

SB SC SB SC MC

round 2

SB SC SB SC

MC

round 3

SB SC SB SC MC

round 4

SB SC SB

none

nonzero difference uncertain zero difference

none

Fig. 5: 5-round attack for SPEEDY-r-192.

For the first key addition, we first deduce the key bits involved in row 25 of
the state after the SC ◦ SB in round 0. According to the linear key schedule
of SPEEDY-r-192, the key bits in positions 155, 163, 169, 173, 183, 185 and
177 have been guessed. First, we deduce the key bits involved in row 28 of the
plaintext state, because the key bits in positions 169 and 173 are known, there
are about 2s+19.44 pairs each corresponding to 25.56 34-bit keys after looking up
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the hash table to deduce the 4 key bits left. Then compute the key bits involved
in row 30 by looking up the hash table, because the key bits in positions 183
and 183 are known, we get 2s+19.44 pairs each corresponding to 26.56 38-bit keys.
Deduce the key bits involved in row 25 and get 2s+19.44 pairs with 27.56 43-bit
keys remaining with the known key bit 155, and deduce the key bits involved
in row 29 and get 219.44 pairs with 29.56 48-bit keys with the known key bits
177. Finally, we guess the key bits involved in row 26, get 219.44 pairs with 211.56

54-bit keys remaining, and guess the unknown key bits in row 25 of the state
after the first SC, check the output difference to get a 6-bit filter. Up to now,
we obtain 2s+19.44 pairs each corresponding to 26.56 55-bit keys.

For the other rows, we just need to compute the unknown key bits involved
in the row, the complexity is much lower than the process we stated above. The
time complexity of guessing the key bits involved in the first key addition is
about (2s+25 + 219.44 × (11 + 26))× 1/32× 1/10 ≈ 2s+18.

Each guess determines a 166-bit key, and we exhaust the remaining key bits.
In order to get one right pair under the right key guess, we expect 2s+2×28−1−28×
2−107.91 ≥ 1, and set s = 80.91. For the wrong key guess, about 2108.91−28−162 =
2−81.09 pairs will validate the input and output differences of the 3.5-round
distinguisher. According to the formulas in [4], α < 0.15 and β < 2−100, hence
the success probability of the attack is PS > 85% and the total time complexity
of the 5-round attack is given by

280.91+28 + 280.91+18 + 2192 · 2−100 · (1− 2−192) ≈ 2108.95.

The data used in the attack is about 280.91+28 = 2108.91.

6 Conclusion

In this paper, an accelerated automatic search model for SPEEDY-r-192 based
on SAT method is proposed, the automatic search model is practical to give the
optimal probability of the differential trail for SPEEDY. A 4.5-round differential
characteristic with the probability of 2−150.15 and a 3.5-round differential charac-
teristic with the probability of 2−104.83 are found by the solver. Furthermore, we
propose a 5-round and a 6-round key-recovery attack for SPEEDY-r-192 utiliz-
ing the modified differential distinguisher. These are the attacks that covered the
longest rounds for SPEEDY-r-192 in our knowledge. Our 6-round attack, with
2158.06 time complexity and 2158.04 data complexity, can be viewed as a valid
attack under the security claim for the round-reduced version of SPEEDY-7-192,
which covers 6/7 rounds of the block cipher. And our 5-round attack with 2108.91

data complexity and 2108.95 time complexity can be viewed as a valid attack for
the round-reduced version of SPEEDY-6-192.
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