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Abstract— This paper introduces an implementation of 

Neural Radiance Fields (NeRF) for 3D surface prediction. 

NeRF is a powerful approach for synthesizing complex 3D 

scenes from sparse 2D observations. In this work, we present 

a concise neural network architecture for NeRF and utilize 

synthetic 3D data to train the model. The training process 

involves optimizing the model parameters to minimize the 

mean squared error loss between predicted and ground truth 

surfaces. The results showcase the model's ability to 

accurately predict 3D surfaces, as demonstrated through 

visualizations of both ground truth and predicted surfaces. 

The simplicity of our implementation serves as an accessible 

entry point for researchers and practitioners interested in 

exploring NeRF and its applications in 3D surface prediction. 
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Introduction 

In recent years, the intersection of computer vision, 

machine learning [1-8], and deep learning [9-14] has 

witnessed remarkable advancements, especially in the 

realm of three-dimensional (3D) scene reconstruction. 

Neural Radiance Fields (NeRF) stand out as a cutting-edge 

approach within this landscape, providing a potent 

methodology for synthesizing detailed 3D scenes from 

sparse 2D observations. 

This paper presents a straightforward implementation of 

NeRF, a neural network-based model designed for 

predicting intricate 3D surfaces. The fundamental premise 

of NeRF involves training a neural network to learn the 

radiance field of a scene, enabling the synthesis of novel 

views and rendering high-fidelity images from arbitrary 

viewpoints. 

The primary objective of our implementation is to provide 

a clear and accessible entry point for researchers and 

practitioners interested in experimenting with NeRF. We 

adopt a minimalist neural network architecture and 

leverage synthetic 3D data for training, facilitating ease of 

understanding and application. 

Throughout this paper, we delve into the specifics of our 

NeRF model, detailing the architectural components and 

the training process. The results, presented through 

visualizations of both ground truth and predicted surfaces, 

demonstrate the efficacy of our approach in accurately 

capturing 3D structures. 

By simplifying the NeRF implementation, we aim to 

contribute to the broader exploration of 3D surface 

prediction methodologies, fostering a more inclusive 

understanding of this innovative field.  

Related Research 

PixelNeRF [15] is a novel learning framework designed to 

address limitations in existing methods for constructing 

neural radiance fields (NeRFs). Unlike traditional 

approaches that require extensive calibration and compute 

time for each scene, PixelNeRF employs a fully 

convolutional architecture that conditions a NeRF on input 

images. This enables training across multiple scenes, 

learning a scene prior and facilitating efficient novel view 

synthesis from sparse views (even just one). Leveraging 

NeRF's volume rendering approach, PixelNeRF can be 

trained directly from images without explicit 3D 

supervision. Extensive experiments on ShapeNet 

benchmarks, including single image novel view synthesis 

tasks and multi-object scenes, demonstrate PixelNeRF's 

superior performance over current state-of-the-art 

baselines in both category-specific and category-agnostic 

settings. The model also excels in real scenes from the 

DTU dataset, showcasing its flexibility and efficacy in 

various 3D reconstruction scenarios. 

BungeeNeRF [16] addresses the challenge of modeling 

multi-scale scenes, such as cityscapes, landscapes, and 

intricate 3D models, where imagery exhibits significant 

variations in scale. Unlike conventional Neural Radiance 

Fields (NeRF) that struggle with diverse scales, 

BungeeNeRF introduces a progressive approach. It starts 

by fitting distant views with a shallow base block and, as 

training advances, dynamically appends new blocks to 

handle emerging details in closer views. This strategy 

activates high-frequency channels in NeRF's positional 

encoding inputs progressively, unfolding complex details 

over training. Demonstrating superior performance on 

various data sources, including city models, synthetic, and 

drone-captured data, BungeeNeRF excels in rendering 

high-quality, detailed scenes across a wide range of scales. 

Methodology and Visualization 

Our NeRF implementation comprises a three-layered 

neural network. The network takes a three-dimensional 

point as input, undergoes two ReLU-activated fully 

connected layers with 256 units each, and outputs a single 

unit representing the predicted radiance value. 

Data Preparation: 
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Synthetic 3D Data: Generate synthetic 3D data by 

sampling points uniformly within the range [-1, 1]. 

Compute the ground truth for each point using a 

predefined function that combines sine and cosine terms to 

create a complex surface. 

Training Set: Split the generated data into training and 

testing sets. Use the training set for updating model 

parameters and the testing set for evaluating model 

performance. 

Training Loop: 

Epoch Iteration (5000 epochs in this case): 

Forward Pass: Feed the training points through the NeRF 

model to obtain predicted radiance values. 

Loss Computation: Calculate the mean squared error loss 

between the predicted radiance values and the ground 

truth. 

Backward Pass: Propagate the loss backward through the 

network to compute gradients. 

Optimization Step: Use the Adam optimizer to update the 

model parameters based on the computed gradients. 

Monitoring and Evaluation 

 

Fig. 1: Model Performance: Ground Truth (Blue) vs. 

Predicted (Red) Surfaces. 

The image (Fig.1) illustrates a comparison between ground 

truth and predicted 3D surfaces. In the visualization, the 

ground truth surfaces are represented in blue, while the 

predicted surfaces are depicted in red. The juxtaposition of 

these surfaces allows for a visual assessment of the 

model's performance in capturing the intricacies and 

details of the underlying 3D structures. This comparison 

provides valuable insights into the accuracy and fidelity of 

the neural network's predictions in the context of 3D 

surface reconstruction. 

Conclusion 

This paper presented a simplified implementation of 

Neural Radiance Fields (NeRF) for 3D surface prediction. 

The straightforward neural network architecture, coupled 

with synthetic 3D data, aimed to provide an accessible 

entry point for researchers and practitioners interested in 

exploring NeRF. 

Through 5000 epochs of training, the model demonstrated 

the capacity to predict intricate 3D surfaces, as evidenced 

by the visualizations comparing ground truth and predicted 

surfaces. The optimization process, facilitated by the 

Adam optimizer, allowed the model to learn the 

underlying radiance field and generalize to unseen data. 

While the results showcase the potential of NeRF in 3D 

surface prediction, there exist opportunities for further 

exploration and improvement. Future work could involve 

experimenting with different neural network architectures, 

incorporating real-world data for training, and exploring 

advanced optimization techniques to enhance model 

performance. 

This implementation serves as a foundational step in 

understanding and applying NeRF in the context of 3D 

scene reconstruction. As the field continues to evolve, this 

work contributes to the broader conversation surrounding 

the intersection of neural networks and computer vision 

for synthesizing detailed 3D environments. 
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