
EasyChair Preprint
№ 13602

Towards the Application of Automated Testing in
Education Systems

Atef Tayh Nour El-Din Raslan and Abdullah Mahdy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 9, 2024

1

Towards applying An Automation Testing

Framework for Educational Web Application

 Dr. Atef Raslan
1 and Abduallah Ahmed Mahdy2

Abstract—Automated testing has revolutionized various industries by

enhancing efficiency and reliability in software development. This

research explores the potential application of automated testing

methodologies in the education system. By leveraging automated testing

tools and techniques, educators can streamline assessment processes,

ensure consistency in grading, and provide timely feedback to students.

This study investigates the feasibility of implementing automated testing

in educational settings, considering factors such as test design, integration

with learning management systems, and the impact on teaching

methodologies. Through a comprehensive review of existing literature and

case studies, this research aims to identify challenges, opportunities, and

best practices for incorporating automated testing into the education

system. The findings of this study offer insights into how automated testing

can improve assessment practices, promote student engagement, and

promote personalized learning experiences in the digital age.

Keywords— Automated testing, education system, feedback

mechanisms, learning management systems.

I. Introduction

software applications these days are built and worked in web environments;

they are also called web-based applications. A web-based application is a

program that is accessed over a network connection, rather than existing

within a device.

memory, it often runs inside a web browser. Their advantage is the ability

to share functions and data in the system; support multiple environments

working. Therefore, providing quality assurance solutions for web-based

applications is becoming more and more important. Software testing is a

technique used widely in software quality assurance. It is a process of

executing a program or application with the intent of finding the software

bugs. It can also be stated as the process of validating and verifying that a

software program or application meets technical requirements that guided

its design and development.

In practice, software applications can be tested using two methods:

manual testing and automation testing. However, manual testing can

become tedious and error-prone over time. To overcome these

drawbacks and streamline the testing process while saving time and

resources, automation testing is employed. This involves utilizing

automation tools to execute a suite of test cases automatically.

This paper proposes the development of a Python-based automation

testing framework specifically designed for web-based applications.

This framework seamlessly integrates with

• POM elements in a resource file.

• Use keywords to encapsulate complex interactions.

-The Robot Framework is a generic open-source automation

framework for acceptance testing, acceptance test-driven

development (ATDD), and robotic process automation (RPA)

known for its simplicity and extensibility. And that makes it an

excellent choice for testing educational web applications.

- It uses keyword-driven testing and supports the use of external

libraries.

 The contributions of this paper encompass:

1. A module-driven approach to web-application testing.

2. A high-performance and secure framework capable of executing

multiple test scripts simultaneously.[2]

The structure of the paper is as follows:

• Section 2 provides background information on web automation

testing.

• Section 3 presents the Related Works for Robot Framework.

• Section 4 Presents Architecture of the Proposed Framework.

• Section 5 Presents the implementation OF the Framework

• Section 6 offers a case study of an Education management system to

illustrate the framework's application.

• Finally, Section 6 Conclusion Of the paper and suggests future

research directions.

.

1 Department of Computer Science, Faculty of Statistical Studies and

Research, Cairo University, Egypt, Dr.Atef.Raslan@gmail.com.

 2 Department of Software Engineering, Faculty of Statistical Studies and

Research, Cairo University, Egypt, Abdullah.mahy@yahoo.com.

mailto:Dr.Atef.Raslan@gmail.com
mailto:Abduallah.mahdy@yahoo.com

2

II. Background

Automation testing is a method of software testing that leverages

software tools to perform tests and then compares actual test

results with expected results, often with minimal human

intervention.[6]The process includes several crucial phases:

1. Test Tool Selection: This is a vital initial step in any

organization before beginning automation. The choice of

test automation tool heavily depends on the technology on

which the Application Under Test (AUT) is built. For

instance, this research provides an automated testing tool

specifically for web applications.

2. Defining the Scope of Automation: This involves

determining which areas of the AUT will be automated.

Key considerations include scenarios involving large data

sets, common functionalities across applications, and the

complexity of test cases.

3. Planning, Design, and Development: This phase

encompasses building the strategy and plan for

automation. It includes tasks such as selecting automation

tools, designing the framework, identifying in-scope and

out-of-scope items, and preparing the automation testbed.

4. Test Execution: This involves the actual running of

automated tests or integrating the automation framework

with built systems. The execution can be performed

directly via the automation tool or through a Test

Management tool that triggers the automation tool. It also

includes verifying and analyzing the results generated by

automated tests and logging any detected failures.

5. Maintenance: Ensuring that automated tests are regularly

updated to accommodate changes in the AUT,

maintaining their purpose and reliability.

Web-based application testing poses unique challenges due to

its execution environment's heterogeneity, multi-platform

support, autonomy, cooperation, and distribution. Various

approaches are proposed to address these challenges, focusing

on:

• Functionality Testing: Verifies if the product meets the

intended specifications and functional requirements,

including testing all site links, formats used for user

information exchange, database connections, cookies, and

HTML/CSS verification.

• Usability Testing: Ensures the application is user-

friendly.

• Interface Testing: Checks the interface and data flow

between systems, including the application, web, and

database servers.

• Database Testing: Critical for ensuring comprehensive

database integrity and performance.

• Compatibility Testing: Ensures the application performs

well in different contexts.

• Performance Testing: Assesses the site's ability to handle

various loads.

• Security Testing: Verifies the application's security

against data theft and unauthorized access.

In the realm of automation testing, two primary methods exist:

manual and automated. Manual testing, while valuable, can

become monotonous and error prone. Automated testing

addresses these drawbacks by reducing the time and cost

involved in the testing process, using tools to execute test case

suites.

III. Related work

-Previous Studies on Automated Testing in Education

Research have shown the effectiveness of automated testing in

educational technology.[3]

-Automated testing frameworks like Selenium and TestNG

have been widely used. However, the Robot Framework, with

its keyword-driven approach, offers an easier learning curve

and better maintainability, which is advantageous for

educational web applications. .[7]

- While Selenium WebDriver and TestNG are powerful, they

require extensive coding knowledge.

Robot Framework, in contrast, allows for the creation of

readable and maintainable test scripts through its keyword-

driven approach, making it accessible to educators and testers

with limited programming experience.

IV. Architecture of the Proposed Framework

In this section, we introduce the architecture of the proposed

automation framework specifically designed for educational

web applications. Following the architectural overview, we

delve into its detailed design. The proposed testing approach,

which is both modularity-driven and based on the Page Object
Model (POM), facilitates easier development and maintenance

of test cases. The main steps include:

1. Generating POM from web applications.

2. Developing test scripts.

3. Executing test scripts.

4. Logging the test results.

Following this methodology, we construct the automation

framework with the following key characteristics:

• Reusability: Web elements are defined once and reused

across all test cases.

• Functionality-Based Test Cases: Test cases are

constructed to align with specific functionalities of the

web applications.

3

The architecture of the proposed framework is depicted in Figure

1. Pages and objects are automatically generated from web

applications using the Selenium Page Object Generator.[6]The core

components of the framework involve constructing test scripts

from the POM model and executing test cases using Robot

Framework. The process is as follows:

1. Development of Test Cases: Users develop test cases using

the POM model. The framework then creates test scripts that
correspond to these test cases based on the POM model.

2. Test Plan Execution: The framework converts the user-

defined test plan into an XML-based file, which is executable

by Robot Framework. The framework runs the test cases on the

browsers using Robot Framework and the Selenium Library.

3. Result Logging: Test results are captured and stored in a file

for review and analysis.

The proposed framework also incorporates security policies to

prevent test scripts from unintentionally accessing restricted

resources. The secure model is based on a sandbox mechanism

deployed within the Java platform. Users have the flexibility to

modify these security policies by customizing the configuration

file, which is formatted similarly to a Java policy file.

Additionally, Robot Framework and Selenium are integrated into

the framework, allowing for customization via an XML-based

configuration. This integration enables efficient execution and

management of test cases, ensuring comprehensive and reliable

testing of educational web applications.

. This separation of concerns improves the organization of test

scripts, making them more maintainable and scalable.

 Figure 1. Architecture of robot framework [1].

Figure 1 illustrates the architecture of the proposed framework,

showing the interaction between various components, including Test

Cases, Robot Framework, Selenium Library, Selenium WebDriver,

Browser Drivers, and others.

V. Implementation

Setting Up the Environment: [1]

• Installing Python.

• Installing Robot Framework:

Detailed steps to install Robot Framework and its

dependencies.

• Required Libraries and Tools:

List of required libraries, including Selenium

Library and Browser drivers.

Creating Test Cases:

User Registration: Test case to verify the registration

functionality.

User Login: Test case to check the login functionality.

Create Courses: Test Cases to verify the courses are

created.

Create Subjects: Test Cases to verify the subjects are

created.

Course Enrollment: Test case to test course enrollment.

Subject Enrollment: Test case to test Subject enrollment.

Content Access: Test case to validate access to course

content.

Quiz Taking: Test case to ensure quizzes can be taken and

results are recorded.

To illustrate the use of the proposed framework, we define

ten test cases as follow [Table1]

Following the proposed approach, Robot users need to

Add Courses, subjects, Students and Staff.

objects of home, log in, and register pages. objects of

home, log in, and register pages In the Robot Framework,

keywords correspond to the functional features of the

pages, while variables define attributes for web element

identifiers.

Table 1. Test cases of the Educational Web Application

No TC Name Description

1 TC01 Open College Management System

2 TC02 Login With Valid Username and Password

3 TC03 Login With Invalid Username and Password

4 TC04 Check Functionality of add course

5 TC05 Check Functionality of add Subjects

6 TC06 Check Functionality of add Staff

7 TC07 Check Functionality of add Students

8 TC08 Check Functionality of Manage Staff

9 TC09 Check Functionality of Manage Students

10 TC10 Delete an account

4

Sample Code:

Explanation of the Sample Code: Step-by-step
explanation of a sample test suite.

Listing 1. A part of Login page Test Case

Listing 2. A part of Add Course page Keywords.

Listing 3. A part of Add Course page Test Case

In the Robot Framework, you can create a test plan by defining a

suite that specifies which test cases to run and how many times to

run each test. You can use the Repeat Keyword feature to run

specific test cases multiple times. Here is how you can modify
the description to fit the Robot Framework:

Listing 4. A part of Running Specific Test Cases

Or You can Run All test suits Using This Command
Ex: robot -d results/ tests/

Figure 2. Result After of Running Specific Test Cases

Figure 3. Tests Report After of Running Specific Test Cases

5

Figure 4. Tests Log After of Running Specific Test Cases

To run all test cases, the test plan just needs to define Test suite—

All—1.

Figure 4 shows the result of the execution of test plan five. It

graphically reports.

that 03 test cases are successful, and 02 test case is failed.

VI. Discussion

Advantages of Using Robot Framework:
The Robot Framework offers several advantages, including
ease of use, readability, and
maintainability. Its keyword-driven approach makes it
accessible to non-developers, while its
integration with Selenium Library provides robust web
automation capabilities.
Challenges and Limitations

While the Robot Framework is powerful, it does have some
limitations. The initial setup can be.
complex and integrating with other tools may require
additional effort. However, these challenges
can be mitigated with proper documentation and support.
Comparison with Other Testing Approaches
Compared to other testing frameworks, the Robot

Framework's keyword-driven approach offers a higher level of
abstraction, making it more accessible to a broader audience.
Its flexibility and
extensibility further enhances its appeal for educational web
application testing.

VII. Conclusion and Future Work

Summary of Findings
The study demonstrated that the Robot Framework is an
effective tool for automated testing of
educational web applications. Its ease of use and flexibility
make it an asset for ensuring the
quality and reliability of these applications.
Future Enhancements

Future work could focus on integrating the Robot Framework
with continuous integration (CI) tools.
and exploring additional libraries and plugins to enhance its
capabilities further.

VIII. REFERENCES

[1] Robot Framework Documentation. Retrieved from

https://robotframework.org/

[2] Selenium Library Documentation. Retrieved from

https://robotframework.org/SeleniumLibrary/.

[3] Educational Web Application Testing: Challenges and

Best Practices. Journal of Educational

Technology, 2023

[4] Dave, R., & Patel, R. (2019). A Web Page for Automation

Test Framework. International Journal of Computer

Applications, 178(14), 42–47.

https://doi.org/10.5120/ijca2019918911

[5] Tarhini, A., Fouchal, H., & Mansour, N. (n.d.). A Simple

Approach for Testing Web Service Based Applications.

[6] Nguyen, H. P., Le, H. A., & Truong, N. T. (2019). jFAT:

An automation framework for web application testing.

Lecture Notes of the Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering,

LNICST, 266, 48–57. https://doi.org/10.1007/978-3-030-

06152-4_5

[7] Nikfard, P., Suhaimi bin Ibrahim, A., & Hossein
Abolghasem Zadeh, M. (n.d.). A Comparative
Evaluation of approaches for Web Application
Testing.

[8] Nikfard, P., Suhaimi bin Ibrahim, A., & Hossein
Abolghasem Zadeh, M. (n.d.). A Comparative
Evaluation of approaches for Web Application

Testing.
Prasad, P. (n.d.). AUTOMATION TECHNOLOGY
AND TOOLS. www.iejrd.com

[9] Nikfard, P., Suhaimi bin Ibrahim, A., & Hossein
Abolghasem Zadeh, M. (n.d.). A Comparative
Evaluation of approaches for Web Application
Testing.

[10] St Henderi, 1. (2020). Software Testing as Quality
Assurance on Web Application.
http://domain_name.tld/index.php/member/C_monitor

https://robotframework.org/
https://doi.org/10.1007/978-3-030-06152-4_5
https://doi.org/10.1007/978-3-030-06152-4_5

