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Abstract. Inspection and intervention by drones in rescue operations
have growing attention due to multiple causes, including natural and
man-related events. Additionally, the rapid advancements in vision sen-
sors, object detection models, and AI-based methods can boost the suc-
cess of rescue scenarios. Drone navigation involves object scale variations
creating a computation load for the scene urge high-speed processing. To
solve the two issues mentioned above, we propose the APH-YOLOv7t
method that follows Holdout method. In this paper, we introduce a new
Attention-based Prediction Head for YOLOv7-tiny. We also present the
evaluation results of YOLOv7 the state-of-the-art convolutional neural
network-based solution, here is used for robust object detection. In this
context of drone navigation there is a need to perform detection of per-
sons on land and sea surfaces allowing to reduce disaster, distress, iden-
tify and rescue them. Despite the higher success rate of object detection
models, vision complexities make detection tasks on drone-captured im-
ages more challenging and this area remains under-explored. We used the
existing three search and rescue datasets which are images acquired from
drones specific to our objective. Results show that our APH-YOLOv7t
method was the most robust attention-based YOLO and comprehensive
person detection method for our application, demonstrating a consis-
tently high level of performance in comparison to YOLOv7-tiny. Evalu-
ation results on all three datasets are reported. With this solution, and
conditional performance, we demonstrate to be able to satisfy our re-
quirements of a mean average precision (mAP50) of over 0.80 for the
person class and operational performance with over 125fps on a single
GPU Nvidia RTX2080Ti.

Keywords: person class, person detection, deep learning, fine-tuning,
evaluation, Heridal, Mobdrone, SeaDronesSee, attention head, YOLOv7

1 Introduction

Natural and technological disasters, such as hurricanes, earthquakes, eruptions
of volcanoes, landslides, and debris flow, wild-land and urban–interface fires,



2 Vamshi Kodipaka et al.

floods, oil spills, and space–weather storms, impose a significant socio-economic
burden. It should be imperative to devise vision-based drone solutions that al-
low rescuers to engage safely while speeding up search operations. One of the
most effective measures through drone-based rescue missions is to foster tar-
get detection and active monitoring to prevent or respond to imminent danger
and risk reduction. Although there are key advances in fully autonomous drone
navigation solutions[29][32][33] for Search and Rescue (SAR) missions following
crucial principles like selective search pattern, sorted search sweep clutter, and
robust data acquisition; we notice that object detection is not mature and still
requires further developments. This is because of the crucial vision complexities
challenges imposed while capturing images from drones such as pose and scale
variations, adverse weather conditions like the presence of snow, dust, fog, low
visibility, altitude, and illumination, presence of artifacts like people wearing
hats, camouflaged environment with trees and rocks, motion blur and the high
image resolution. Thus, developing robust and reliable vision algorithms are of
special interest.

Robotic Perception for drones operating in outdoor[34][35] natural environ-
ments has been studied for several decades. For drones operating in rescue sce-
narios, in particular, there is research[36] since the late 80s. Nevertheless, despite
many years of research, as described in surveys over time, a substantial amount of
problems have yet to be robustly solved. The best examples of the use of drones
are after Hurricane Katrina[1], Christchurch earthquake[2], and Paris cathedral
firebreak[3] incidents. Thus, drone navigation and its application domain have an
unquestionable but impeccable impact on our society. The proposed experiments
will contribute to rescue operations by reducing land and sea-surface hazards.

In this paper, we propose an attention-based model, APH-YOLOv7t based
on YOLOv7-tiny to solve the problems like object scale variations, and densely
packed objects in search and rescue scenarios. The overview of the detection
pipeline using APH-YOLOv7t is shown in fig.2,3. We use YOLO-tiny’s fea-
ture extraction layers with LeakyReLU activations and follow APH-YOLOv7t,
which is the original version of the attention head. Totally, APH-YOLOv7t
contains four attention-based detection heads separately used for the detection
of tiny, small, medium, and large persons. We adopt Convolutional Block At-
tention Module (CBAM [4]) to sequentially generate the attention map along
channel-wise and spatial-wise dimensions as similar to TPH-YOLOv5[5] method.
Compared to YOLOv7 and YOLOv7-tiny, APH-YOLOv7t can better deal with
drone-captured images. Our contributions are listed as follows:

– We integrate the Attention Prediction Head into YOLOv7-tiny, which can
accurately localize objects in high-density scenes.

– We integrate CBAM into YOLOv7-tiny, which helps to find regions of inter-
est in images that have wide coverage.

– Evaluating YOLOv7 and YOLOv7-tiny on existing Heridal[6] Mobdrones[7]
and SeaDronesSee[8] datasets which are drone-captured RGB images.
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– Scaling and Data-Augmentation such as brightness, saturation, exposure
applied on Heridal data to test the detection accuracy.

This paper is organized as follows. Section II of the paper describes the object
detection technology and gives a brief collection of SAR datasets. We introduced
APH-YOLOv7t and evaluated the performance in the context of a Yolo which
we have described in section III. The qualitative and quantitative results are
been emphasized in section IV. The conclusion and future work are described as
discussion in section V.

2 Related Work

Salient object detection is a computer vision task that involves identifying the
most visually distinct or prominent objects in an image or video. The goal of
salient object detection is to locate the most important objects in an image,
which can then be used for a variety of applications such as image editing, object
recognition, and content-aware image resizing. The salient objects in an image
are typically defined as the objects that stand out from their surroundings in
terms of color, texture, or shape. Here, we used YOLOv7 that typically uses fea-
tures such as brightness, exposure, saturation and size to identify persons. The
different approaches of salient object detection are: feature-based methods[9],
region-based[10], deep learning-based methods[11], and hybrid methods[12].

Methods for object detection are a natural progression from non-neural ap-
proaches (the approaches to first define features, then use a technique such as a
support vector machine[13] to do the classification), to the neural techniques that
are able to do end-to-end object detection without specifically defining features
and are typically based CNNs which in turn intricate robotic systems. Two-stage
CNN detectors[14][15] first propose a set of regions of interest by select search
or regional proposal network. The proposed regions are sparse as the potential
bounding box candidates can be infinite. Then a classifier only processes region
entities. Single-stage detectors[16][17][18] skip the region proposal stage and run
detection directly over a dense sampling of possible locations. Two-stage de-
tectors have high localization and recognition accuracy but are slow whereas
one-stage detectors have high inference speeds.

This method[19] addressed the problem of comparing the accuracy of hu-
man detection in aerial images taken by unmanned aerial systems in SAR mis-
sions between an algorithm based on deep neural networks and a SAR ex-
pert. An already-existing Heridal[6] image database, with 500 labeled, full-size
4000×3000-pixel real-world images that all contain at least one person are stored.
This experiment proved the effectiveness of image processing algorithms as sup-
port to SAR missions but failed to evaluate the object detection metrics exclu-
sively. A methodology[20] based on the object detector YOLOv5 is introduced
by improving the performances in detecting small objects such as persons in
aerial images are evaluated. These algorithms implement shallow layers of the
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feature extractor to increase the spatial-rich features and help the detector to
find small objects. This paper[21] presents the results of an experimental evalu-
ation in which the lightweight version of the YOLOv5 detection, detects humans
in danger using two new benchmark datasets specifically designed for SAR with
drones. But no pre-processing and data augmentation on input images were in-
vestigated.

However, this method[22] proposed a change in bounding box sizes by some
percentage of its width and height. To investigate the possible effect of the
dataset labeling quality the augmented and non-augmented dataset versions were
prepared, leading to significant improvement of performance by loss and mean
average precision (mAP) that can be observed in both versions in comparison to
experiments without data augmentation. But this method does not investigate
the evaluation results on the YOLOv7, a real-time convolutional network for ob-
ject detection. However, their experiment has limited evaluation results on drone
images which load almost double the computation cost as this method uses two
models. Attention-based detection heads when integrated into object detection
models, are useful for several reasons: improved object localization, scale and
context awareness, reduced false positives, inter-object relationships, adaptabil-
ity, saliency and visualization, robustness to clutter. TPH-YOLOv5[5] also uses
an attention mechanism with the CBAM[4] module; two sequential submodules
are used to refine feature maps that go through CBAM. However, TPH-YOLOv5
has got the poor inference time that is in few hundreds of milli-seconds, which
makes it unsuitable for the real-time applications. We draw inspiration from this
method to make YOLOv7 run in less inference time maintaining the accuracy.

There are not abundant benchmark datasets and CNNs models used for SAR
operations with drones. We have noticed Heridal[6] (Land), Mobdrone[7] (Sea-
surface), SeaDronesSee[8] (Sea-surface), FloodNet[23], Auvsi-Suas[24] (Synthetic
characters and shapes), SARD[25] (forestry), and Lacmus[26] (forestry), for car-
rying out robotic operations for various computer vision tasks. They were al-
ready trained and tested using a set of state-of-the-art CNNs but not using
YOLOv7. So, as part of considering SAR datasets, our method APH-YOLOv7t
along with YOLOv7[27] is trained and evaluated on the Heridal, Mobdrone and
SeaDronesSee datasets.

3 Methodology

3.1 Preprocessing the data and YOLOv7

For our application, we are interested in persons by detecting bounding boxes
only considering the person class. In real-time the image inputs for our solution
consist of three image streams conveyed by an RGB camera, namely Red (R),
Green (G), and Blue (B), a frame rate that imposes a requirement on the execu-
tion speed for inference to be under 10ms. Another particular requirement for our
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application is to maximize mAP, a conservative approach that ensures the search
activities are effectively conducted. To this end, we evaluated the performance of
the state-of-the-art neural network YOLOv7 together on the drone data bench-
marks. The image quality and limited image resolution of drone images can be
affected by factors such as altitude, lighting conditions, and motion blur. This
can make it difficult to identify and locate small objects or subtle features in the
image, especially if the images are captured at high altitudes causing obscured
scenarios. Drone images usually have a high resolution, thereby pre-processing
steps are required to overcome the drawback. In our proposed method, we gen-
erated new datasets based on the existing SAR datasets. By pre-processing the
drone data[28], we overcome the problem of how to train huge drone images
under limited computational resources and find accurate bounding boxes dur-
ing test time. Data augmentation is applied on Heridal data, that is saturation,
brightness, and exposure of -25 to +25 percent are varied.

The generated datasets are then trained on YOLOv7. YOLOv7[27] which
is one of the latest advancements among the object detection models which
has Extended Efficient Layer Aggregation Layers (EELAN), Model Scaling for
concatenation-based models, and Trainable Bag-of-Freebies. It focuses on the
number of parameters, and computational density of a model, generate models of
different scales and merges multiple computing modules. Thus, the above factors
confirm that YOLOv7 is an excellent design for drone datasets. Our proposed
experimentation proved the same and attained a real-time performance. The
flow chart in fig.1 describes the training and testing pipeline with YOLOv7.

Fig. 1: Simple process flow followed in this work - Train and Test with YOLOv7

3.2 APH-YOLOv7t with CBAM

The core Convolutional Block Attention Module (CBAM[4]) is a simple but effec-
tive attention module. It is used in building the Attention-based Prediction Head
(APH). Its lightweight modularity allows it to integrate into most of the famous
CNN architectures and allows them to train in an end-to-end fashion. In order
to accomplish adaptive feature refinement, CBAM multiplies the attention map
with the input feature map after progressively inferring it along the two distinct
channel and spatial dimensions. The structure of the CBAM module is empha-
sized in fig. 2. According to the experiment in the study[4], at different scales, the
performance of the model significantly increased after integrating CBAM into
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several models on various classification and detection datasets, demonstrating
the efficacy of this module. To enable APH-YOLOv7t to resist the distracting
input and concentrate on beneficial target objects, CBAM is used to extract the
attention region. To exhibit this, we introduce four CBAM modules which act as
detection heads at four varied feature scales. Thus, this leads to a new method of
attention heads applied over YOLOv7-tiny benefiting both from reduced model
size and an attention mechanism. CBAM is illustrated in fig.2. The detection
head of YOLOv7-tiny with CBAM (APH-YOLOv7t) is illustrated in fig.3.

Fig. 2: Convolutional block attention module (CBAM)

Fig. 3: Detection Head of APH-YOLOv7t with CBAM modules(red). Changes
are in red (added CBAM to YOLO-tiny’s detection head)
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4 Experimental Results

In the description that follows, single-person class ground truth labels are an-
notated in YOLO format using Roboflow[30] pre-built online annotations tools
on all three datasets. An exclusive review of SAR datasets is detailed in Table I.
The experimental setup is detailed in Table II. Heridal has 640x640, Heridal(S0)
has 1280x1280, and Heridal(S1) has 640x640 image resolutions with data aug-
mentation like brightness, saturation, and exposure applied which are described
in Table II. Our method of attention-based prediction head for YOLOv7-tiny
and TPH-YOLOv5 is also evaluated on all three SAR datasets.

Table 1: Setup (2 GeForce RTX2080Ti GPUs and Intel i7-4790K@4GHzx8 CPU)

Dataset train images val images test images shape classes instances

Heridal 738 204 98 640x640 1 multiple
Mobdrone 1137 120 301 1920x1012 1 1 or 2
SeaDroneSee 648 129 88 5456x3632 1 multiple

Heridal(S0) 743 209 116 4000x3000 1 multiple
Heridal(S1) 738 204 98 640x640 1 multiple

4.1 YOLOv7 on Heridal data - Results

For experimentation on Heridal data, using YOLOv7 and a pre-trained model
which has weights of YOLOv7 already trained on 640x640 image resolution for
300 epochs with COCO[31] data are considered. Corresponding tests were con-
ducted tuning the hyper-parameters such as batch-size, learning rate, but with
the same architecture of YOLOv7. Qualitative results for all tests are showcased
in fig.4. Input images are scaled down to 640x640 resolution. Experimentation
leads with set parameters, using which the CNN was trained from epoch 1 with
the transfer learning technique. Training for 500epochs and 950epochs on heridal
data are carried out respectively and tested with an intersection-over-union of
0.65, and the evaluation metrics are plotted in fig.7,8.

4.2 YOLOv7 on Mobdrone and SeaDronesSee data - Results

For experimentation on both the datasets, in the initialization step, we used
YOLOv7 and trained weights of COCO[31]-640x640 image resolution for 300
epochs as similar to Heridal experiment. Experimentation leads with set param-
eters, using which the CNN was trained from epoch 1 with the transfer learning
technique. Training for 300 epochs and 180 epochs respectively are carried out
on all three datasets and tested with an intersection-over-union of 0.65, where
other evaluation graphs are plotted. Qualitative results for tests are showcased
in fig.5,6. The mAP, F1, Precision, and Recall for YOLOv7 when trained and
tested for all three datasets are plotted and given in fig.7,8.



8 Vamshi Kodipaka et al.

Fig. 4: Heridal APH-YOLOv7t detection (with persons in orange boxes)

5 Discussion

In this paper, we present the results of experiments conducted to test the per-
formance of the state-of-the-art neural network based-solution YOLOv7 as men-
tioned in Sec.4, in the context of designing a vision system to perform search and
rescue operations. The key problems like the pre-processing steps and data aug-
mentation on drone data were addressed. Heridal data has smaller size person
class entities whereby Heridal(S0) with 1280x1280 resolution on YOLOv7-tiny
improved the mAP by +0.05. Heridal data(S1) when data augmentation is ap-
plied, that is saturation, brightness, and exposure of -25 to +25 percent has
dropped mAP by -0.14 to that of Heridal data on YOLOv7-tiny; proving any
change in the image parameters will affect the mAP drastically. APH-YOLOv7t
has inference time of under 20ms whereas TPH-YOLOv5 has an inference time
of over 100ms. APH-YOLOv7t has lower FLOPS and Parameters compared to
TPH-YOLOv5 but is slightly higher than YOLOv7-tiny. Smaller models, in our
case YOLOv7-tiny with fewer parameters tend to have faster inference times
compared to slightly larger model APH-YOLOv7t, which is expected. YOLOv7-
tiny is slightly lighter than your approach and, for the Heridal dataset, it presents
higher results, although they are not optimal. Additionally, for the Mobdrones
dataset, the performance is also higher than set 0.80 mAP. The reason why
the inference time is found to be better for some models compared to others is
because of model size, GPU, batch size, and model quantization.
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Table 2: YOLO - Train and Test Results with Heridal data
Method Dataset Size Epochs F1-Score mAP50 Inference

YOLOv7 Heridal 640x640 950 0.806 0.816 7.8ms
YOLOv7 Mobdrone 896x544 300 0.901 0.885 7.4ms
YOLOv7 SeaDronesSee 960x768 180 0.899 0.898 6.5ms

YOLOv7-tiny Heridal 1280x1280 400 0.611 0.569 1.6ms
YOLOv7-tiny Heridal(S0) 1280x1280 300 0.661 0.610 4.1ms
YOLOv7-tiny Heridal(S1) 1280x1280 750 0.472 0.421 1.5ms
YOLOv7-tiny Mobdrone 1280x1280 100 0.952 0.933 1.6ms
YOLOv7-tiny SeaDronesSee 1280x1280 120 0.777 0.729 1.6ms
TPH-YOLOv5 Heridal 1280x1280 30 0.619 0.614 223ms
TPH-YOLOv5 Mobdrone 1280x1280 10 0.859 0.874 116ms
TPH-YOLOv5 SeaDronesSee 1280x1280 10 0.790 0.731 218ms
APH-YOLOv7t Heridal 1280x1280 400 0.410 0.278 7.9ms
APH-YOLOv7t Mobdrone 1280x1280 100 0.891 0.808 16.8ms
APH-YOLOv7t SeaDronesSee 1280x1280 120 0.766 0.709 10.0ms

Table 3: YOLO - Computational complexity
Method Layers GFLOPS Parameters

YOLOv7 314 103.2 36.4M
YOLOv7-tiny 208 13 6M
TPH-YOLOv5 371 160 41M
APH-YOLOv7t 300 13.5 7.2M

6 Conclusion

In this paper, the demonstrated APH-Yolov7t has delivered a competitive per-
formance compared to the YOLOv7-tiny. Results show that, overall, YOLOv7
was more robust on the Heridal, Mobdrone, and SeaDronesSee datasets and
comprehensive for our application. Our method APH-YOLOv7t, with attention
mechanism on baseline, resulted in reasonably well in inference when compared
to TPH-YOLOv5 and competitively well in mAP50 when compared to YOLOv7
and YOLOv7-tiny. Drone images in Search and Rescue Operations often have
varying resolutions and scales, an attention-based head can improve the model’s
efficiency, potentially leading to better person detection. Our method supports
such missions. YOLOv7-tiny is already a lightweight model known for its real-
time performance. By optimizing the attention-based head for efficiency, one can
maintain fast inference times while benefiting from the attention’s contextual ca-
pabilities. For this, also there is a further chance of tuning TPH-YOLOv7t to
transformer-based YOLOv7-tiny’s head, which is expected to beat the baseline
in terms of mAP50.

This widens up new possibilities for more widespread adoption of hybrid
transformer prediction head-based YOLO models in the field, improving the ef-
ficiency of object detection models and reducing search time associated with



10 Vamshi Kodipaka et al.

Fig. 5: Mobdrone APH-YOLOv7t detection (with persons in green boxes)

Fig. 6: SeaDronesSee APH-YOLOv7t detection (with persons in blue boxes)

drone deployment. Our study lays the foundation for future research and devel-
opment in drones for search and rescue operations, ultimately leading to faster,
more accurate and efficient practices in the field.
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