
EasyChair Preprint
№ 9555

NP on Logarithmic Space

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 6, 2023

NP on Logarithmic Space

Frank Vega ∗1

Abstract

P versus NP is considered as one of the most important open prob-
lems in computer science. This consists in knowing the answer of the
following question: Is P equal to NP? It was essentially mentioned in
1955 from a letter written by John Nash to the United States National
Security Agency. However, a precise statement of the P versus NP
problem was introduced independently by Stephen Cook and Leonid
Levin. Since that date, all efforts to find a proof for this problem have
failed. Another major complexity classes are L and NL. Whether
L = NL is another fundamental question that it is as important as
it is unresolved. We prove that NP ⊆ NSPACE(log2 n) just using
logarithmic space reductions.

2020 MSC: MSC 68Q15, MSC 68Q17

Keywords: Computational Algorithm, Complexity Classes, Complete-
ness, Polynomial Time, Reduction, Logarithmic Space

1 Introduction

In 1936, Turing developed his theoretical computational model [10]. The
deterministic and nondeterministic Turing machines have become in two of
the most important definitions related to this theoretical model for compu-
tation [10]. A deterministic Turing machine has only one next action for
each step defined in its program or transition function [10]. A nondetermin-
istic Turing machine could contain more than one action defined for each
step of its program, where this one is no longer a function, but a relation
[10].

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the
set of finite strings over Σ [2]. A Turing machine M has an associated input
alphabet Σ [2]. For each string w in Σ∗ there is a computation associated
with M on input w [2]. We say that M accepts w if this computation
terminates in the accepting state, that is M(w) = “yes” [2]. Note that, M
fails to accept w either if this computation ends in the rejecting state, that is
M(w) = “no”, or if the computation fails to terminate, or the computation

1

ends in the halting state with some output, that is M(w) = y (when M
outputs the string y on the input w) [2].

Another relevant advance in the last century has been the definition
of a complexity class. A language over an alphabet is any set of strings
made up of symbols from that alphabet [4]. A complexity class is a set of
problems, which are represented as a language, grouped by measures such
as the running time, memory, etc [4]. The language accepted by a Turing
machine M , denoted L(M), has an associated alphabet Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) =
“no” [4]. We denote by tM (w) the number of steps in the computation of
M on input w [2]. For n ∈ N we denote by TM (n) the worst case run time
of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs
in polynomial time if there is a constant k such that for all n, TM (n) ≤ nk+k
[2]. In other words, this means the language L(M) can be decided by the
Turing machine M in polynomial time. Therefore, P is the complexity
class of languages that can be decided by deterministic Turing machines in
polynomial time [4]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, u) = “yes” for some string u}.

We measure the time of a verifier only in terms of the length of w, so a
polynomial time verifier runs in polynomial time in the length of w [2]. A
verifier uses additional information, represented by the string u, to verify
that a string w is a member of L1. This information is called certificate.
NP is the complexity class of languages defined by polynomial time verifiers
[8].

It is fully expected that P ̸= NP [8]. Indeed, if P = NP then there are
stunning practical consequences [8]. For that reason, P = NP is considered
as a very unlikely event [8]. Certainly, P versus NP is one of the greatest
open problems in science and a correct solution for this incognita will have a
great impact not only in computer science, but for many other fields as well
[3]. Whether P = NP or not is still a controversial and unsolved problem
[1]. We provide an important step forward for this outstanding problem
using the logarithmic space complexity.

1.1 The Hypothesis

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some
deterministic Turing machine M , on every input w, halts in polynomial

2

time with just f(w) on its tape [10]. Let {0, 1}∗ be the infinite set of binary
strings, we say that a language L1 ⊆ {0, 1}∗ is polynomial time reducible
to a language L2 ⊆ {0, 1}∗, written L1 ≤p L2, if there is a polynomial time
computable function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

An important complexity class is NP–complete [5]. If L1 is a language such
that L′ ≤p L1 for some L′ ∈ NP–complete, then L1 is NP–hard [4]. Moreover,
if L1 ∈ NP , then L1 ∈ NP–complete [4]. A principal NP–complete problem
is SAT [5].

A logarithmic space Turing machine has a read-only input tape, a write-
only output tape, and read/write work tapes [10]. The work tapes may
contain at most O(log n) symbols [10]. In computational complexity theory,
L is the complexity class containing those decision problems that can be
decided by a deterministic logarithmic space Turing machine [8]. NL is the
complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [8].

In general,DSPACE(S(n)) andNSPACE(S(n)) are complexity classes
that are used to measure the amount of space used by a Turing machine
to decide a language, where S(n) is a space-constructible function that
maps the input size n to a non-negative integer [7]. The complexity class
DSPACE(S(n)) is the set of languages that can be decided by a deter-
ministic Turing machine that uses O(S(n)) space [7]. The complexity class
NSPACE(S(n)) is the set of languages that can be decided by a nondeter-
ministic Turing machine that uses O(S(n)) space [7].

A function f : Σ∗ → Σ∗ is a logarithmic space computable function
if some deterministic Turing machine M , on every input w, halts using
logarithmic space in its work tapes with just f(w) on its output tape [10].
Let {0, 1}∗ be the infinite set of binary strings, we say that a language
L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗,
written L1 ≤l L2, if there is a logarithmic space computable function f :
{0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The logarithmic space reduction is used for the completeness of the com-
plexity classes L, NL and P among others.

We can give a certificate-based definition for NL [2]. The certificate-
based definition of NL assumes that a logarithmic space Turing machine
has another separated read-only tape, that is called “read-once”, where the
head never moves to the left on that special tape [2].

Definition 1.1. A language L1 is in NL if there exists a deterministic
logarithmic space Turing machine M with an additional special read-once

3

input tape polynomial p : N → N such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃u ∈ {0, 1}p(|x|) then M(x, u) = “yes”

where by M(x, u) we denote the computation of M , x is placed on its in-
put tape, the certificate string u is placed on its special read-once tape, and
M uses at most O(log |x|) space on its read/write tapes for every input x
where | . . . | is the bit-length function. The Turing machine M is called a
logarithmic space verifier.

We state the following Hypothesis:

Hypothesis 1.2. There is a nonempty language L2 which is closed under
logarithmic space reductions in NP–complete with a deterministic square
logarithmic space Turing machine M using an additional special read-once
input tape polynomial p : N → N, where:

L2 = {w : ∃u ∈ {0, 1}p(|w|) such that M(w, u) = “yes”}

when by M(w, u) we denote the computation of M , w is placed on its input
tape, and the certificate string u is placed on the special read-once tape of
M . In this way, there is a NP–complete language defined by a square
logarithmic space verifier M .

We show the principal consequences of this Hypothesis:

Theorem 1.3. If the Hypothesis 1.2 is true, then NP ⊆ NSPACE(log2 n).

Proof. We can simulate the computation M(w, u) = y in the Hypothesis 1.2
by a nondeterministic square logarithmic space Turing machine N in the
computation of N(w), since we can read the certificate string u within the
read-once tape by a work tape in a nondeterministic square logarithmic
space generation of symbols contained in u [8]. Certainly, we can simulate
the reading of one symbol from the string u into the read-once tape just
nondeterministically generating the same symbol in the work tapes using a
square logarithmic space [8]. We could remove each symbol or a square
logarithmic amount of symbols generated in the work tapes, when we try to
generate the next symbol contiguous to the right on the string u. In this way,
the generation will always be in square logarithmic space. This proves
that L2 is in NSPACE(log2 n). Due to L2 is closed under logarithmic
space reductions in NP–complete, then every NP problem is logarithmic
space reduced to L2. This implies that NP ⊆ NSPACE(log2 n) since
NSPACE(log2 n) is closed under logarithmic space reductions as well.

1.2 The Problems

Now, we define the problems that we are going to use.

4

Definition 1.4. SUBSET PRODUCT (SP)
INSTANCE: A list of natural numbers B and a positive integer N .
QUESTION: Is there collection contained in B such that the product of

all its elements is equal to N?
REMARKS: We assume that every element of the list divides N . Be-

sides, the prime factorization of every element in B and N is given as an
additional data. SP ∈ NP–complete [5].

Definition 1.5. Unary 0–1 Knapsack (UK)
INSTANCE: A positive integer 0y and a sequence 0y1 , 0y1 , . . . , 0yn of pos-

itive integers represented in unary.
QUESTION: Is there a sequence of 0–1 valued variables x1, x2, . . . , xn

such that

y =
n∑

i=1

xi · yi?

REMARKS: We assume that the positive integer zero is represented by
the fixed symbol 00. UK ∈ NL [6].

2 Results

In number theory, the p-adic order of an integer n is the exponent of the
highest power of the prime number p that divides n. It is denoted νp(n).
Equivalently, νp(n) is the exponent to which p appears in the prime factor-
ization of n.

Theorem 2.1. There is a deterministic square logarithmic space Turing
machine M , where:

SP = {w : ∃u such that M(w, u) = “yes”}

when by M(w, u) we denote the computation of M , w is placed on its input
tape, u is placed on the special read-once tape of M , and u is polynomially
bounded by w.

Proof. Given an instance (B,N) of SP , then for every prime factor p of N
we could create the instance

0y, 0y1 , 0y1 , . . . , 0yn

for UK such that B = [B1, B2, . . . , Bn] is a list of n natural numbers and
νp(N) = y, νp(B1) = y1, νp(B2) = y2, . . . , νp(Bn) = yn (Do not confuse n
with N). Under the assumption that N has k prime factors, then we can
output in logarithmic space each instance for UK such that these instances
of UK appears in ascending order according to the ascending natural sort
of the respective k prime factors. That means that the first UK instance in

5

the output corresponds to the smallest prime factor of N and the last UK
instance in the output would be defined by the greatest prime factor of N .
Besides, in this logarithmic reduction we respect the order of the exponents
according to the appearances of the n elements of B = [B1, B2, . . . , Bn] from
left to right: i.e. every instance is written to the output tape as

0z, 0z1 , 0z1 , . . . , 0zn

where νq(N) = z, νq(B1) = z1, νq(B2) = z2, . . . , νq(Bn) = zn for every prime
factor q of N . Finally, the certificate u would be a sequence of 0–1 valued
variables x1, x2, . . . , xn such that for the first instance of UK we have

y =
n∑

i=1

xi · yi,

for the second one

z =

n∑
i=1

xi · zi,

and so on... We can simulate simultaneously k logarithmic space verifiers
Mj for each jth instance of UK. We can done this since the certificate
u would be exactly the same for the k logarithmic space verifiers. Every
logarithmic space verifiers Mj uses O(log | (B,N) |) space where | . . . | is
the bit length function. So, we finally consume O(k · log | (B,N) |) space
exactly in the whole computation of the square logarithmic space Turing
machine M . We can assure that M verifies the instance (B,N) using the
certificate u on square logarithmic space, because of k = O(logN) and
therefore, the whole computation can be made O(log2 | (B,N) |) space. To
sum up, we can create this verifier that only uses a square logarithmic
space in the work tapes such that the sequence of variables u is placed on
the special read-once tape due to we can read at once every valued variable
xi. Hence, we only need to iterate from the variables of the sequence u from
left to right to verify whether is an appropriated certificate according to the
described constraints of the problem UK to finally accept the verification
of all the k instances otherwise we can reject.

Theorem 2.2. NP ⊆ NSPACE(log2 n).

Proof. This is a directed consequence of Theorems 1.3 and 2.1 because
of the Hypothesis 1.2 is true. Certainly, SP is closed under logarithmic
space reductions in NP–complete. Indeed, we can reduced SAT to SP
in logarithmic space and every NP problem could be logarithmic space
reduced to SAT by the Cook’s Theorem Algorithm [5]. Savitch’s the-
orem states that for any space-constructible function S(n) ≥ log n, we
obtain that NSPACE(S(n)) ⊆ DSPACE(S(n)2) [9]. Based on this in-
formation, it is possible to directly determine that NSPACE(log2 n) ⊆
DSPACE(log4 n).

6

Acknowledgments

The author thanks Emmanuel (CEO of NataSquad) for the financial sup-
port.

References

[1] Scott Aaronson. P ? NP. Electronic Colloquium on Computational
Complexity, Report No. 4, 2017.

[2] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, USA, 2009.

[3] Stephen Arthur Cook. The P versus NP Problem. https://

www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf, June
2022. Clay Mathematics Institute. Accessed 9 January 2023.

[4] Thomas Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, USA, 3rd edi-
tion, 2009.

[5] Michael Randolph Garey and David Stifler Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness. San Fran-
cisco: W. H. Freeman and Company, USA, 1 edition, 1979.

[6] Birgit Jenner. Knapsack problems for NL. Information Processing
Letters, 54(3):169–174, 1995. doi:10.1016/0020-0190(95)00017-7.

[7] Pascal Michel. A survey of space complexity. Theoretical computer
science, 101(1):99–132, 1992. doi:10.1016/0304-3975(92)90151-5.

[8] Christos Harilaos Papadimitriou. Computational complexity. Addison-
Wesley, USA, 1994.

[9] Walter John Savitch. Relationships between nondeterministic and de-
terministic tape complexities. Journal of computer and system sciences,
4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

[10] Michael Sipser. Introduction to the Theory of Computation, volume 2.
Thomson Course Technology Boston, USA, 2006.

NataSquad, 10 rue de la Paix 75002 Paris, France ∗1

Email(s): vega.frank@gmail.com ∗1 (corresponding author)

7

https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://doi.org/10.1016/0020-0190(95)00017-7
https://doi.org/10.1016/0304-3975(92)90151-5
https://doi.org/10.1016/S0022-0000(70)80006-X

	Introduction
	The Hypothesis
	The Problems

	Results

