
EasyChair Preprint
№ 4603

A Security-Board Director Research Project at
Github

Frank Appiah

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 19, 2020

1

A Security-board

Director Research

Project at Github.

Prof Frank Appiah AKA FAEng PhD
Affiliate: King's College London, Strand, London, England, UK.
Email:appiahnsiahfrank@gmail.com
12.2020.11.

● Abstract. A small prolog program for security board director used to
make countermeasure check on vulnerability prevention is hosted at
Github with name fanhubgt stroke Securityboard is the main focus of
this article.

Keywords. Repository, Prolog, logic program, security board, vulnerability prevention.

1 Introduction.

Github is how people build software. They’re supporting

a community where more than 50 million* people learn,

share, and work together to build software.

Going deeper with Github as a developer is by

integrating with their APIs, customizing your GitHub
workflow, and building and sharing apps with the

community.

Overview→

Security Board Program in Prolog: Research Project on Github.com .

mailto:appiahnsiahfrank@gmail.com

2

Learn about GitHub's APIs, secure your deployments, and join GitHub's Developer Program.

Webhooks and events→
You can set up, test, and secure webhooks so your integrations can subscribe and
react to events on GitHub.Webhooks allow you to build or set up integrations, such

as GitHub Apps or OAuth Apps, which subscribe to certain events on GitHub.com.

When one of those events is triggered, we'll send a HTTP POST payload to the
webhook's configured URL. Webhooks can be used to update an external issue

tracker, trigger CI builds, update a backup mirror, or even deploy to your production
server. You're only limited by your imagination.

Webhooks can be installed on an organization, a specific repository, or a GitHub
App. Once installed, the webhook will be sent each time one or more subscribed

events occurs.
You can create up to 20 webhooks for each event on each installation target

(specific organization or specific repository).

Events
When configuring a webhook, you can use the UI or API to choose which events will
send you payloads. Only subscribing to the specific events you plan on handling

limits the number of HTTP requests to your server. You can also subscribe to all

current and future events. By default, webhooks are only subscribed to the push
event. You can change the list of subscribed events anytime.

Each event corresponds to a certain set of actions that can happen to your

organization and/or repository. For example, if you subscribe to the issues event

you'll receive detailed payloads every time an issue is opened, closed, labeled, etc.

See "Webhook event payloads" for the list of available webhook events and their
payloads.

Ping event

Security Board Program in Prolog: Research Project on Github.com .

3

When you create a new webhook, we'll send you a simple ping event to let you know
you've set up the webhook correctly. This event isn't stored so it isn't retrievable via

the Events API endpoint.

For more information about the ping event webhook payload, see the ping event.

Apps→
You can automate and streamline your workflow by building your own apps.

GitHub Marketplace→
List your tools in GitHub Marketplace for developers to use or purchase.

2 Research on Security-board Director

There are 3 main types of logic programming the same interpreter with methods like

forward-backward chaining, case-based approach and predicate sentences on facts.

1. director.pl uses a forward-backward chaining method. This method has each rule
having different head name and each rule calls the other after execution in chain with

the main rule.

After each differential rule calling a different headrule is invoked until the last rule is
runs. Then the main, first headrule which is invoked by the Prolog Interpreter is

called again in the process. As result causing all the headrules to be chained.

2. directorcase.pl is based on case approach. Each head rule has the same name

as the other but with a differential increments of integer value starting from 1 to the
the total number of headrules desired. Here, we are looking at 12 in total. The

Heads has the name cdd(1) to cdd(12). After each similar headrule runs, then the
main is invoked again to bring a menu selection for any other head rule in any order.

Security Board Program in Prolog: Research Project on Github.com .

4

Here the choices on selection are 1, 4, 7, 6. It runs as follows:

Cdd(1) can run after main menu shows up.

Cdd(4) can run after main menu shows up again.

Cdd(7) can run after main menu shows up.

Cdd(6) can run after main menu runs again.

3. assertcounter.pl is based on consult approach using a fact loader of predicate
sentences. Consult is a builtin rule of Prolog.

 Using consult(assertcounter.pl), it will load the facts in
the file into its database.

After, writing on the prompt of the Prolog Interpreter will

invoke a Yes or no response in checking for assert of
fact in the database. If yes then a fact is checked as

member of the database.

?- cm_check(invalid,info).
yes

?- cm_check(intern,replacement).
yes

? - cm_check(passby,riot).
yes

?- cm_check(access,system_codes).
yes

?- cm_check(unlawful,entry).
yes

This is a typical way of getting yes responses from the prompt of Prolog execution.

Now no responses.

?- cm_check(interns,replacements).
no

Security Board Program in Prolog: Research Project on Github.com .

5

%made arguments Plural throw no response.

? - cm_check(passthrough,riots).
no

% passby is now pass-through, also riot is riots.

?- cm_check(access,
error throws

 % incomplete with closing brackets and missing second argument.

Further Reading

Search for author name Frank Appiah at easychair.org or Google scholar.

Four published articles are on display at the site.
The first is on security reasoning and the other three on the Prolog files

(1) Appiah, Frank. "Security Controls or Countermeasures: Vunerabilities Prevention."

Easychair Preprint 4410 (2020).
(2) XProlog. Android IDE for Logic Programming. Playstore. 2020.
(3) Github. Online Repository. Web access at Github.com. 2012.
(4) Appiah, Frank. "Open source project called Securityboard". Hosted at Github.com.

Web access, https://github.com/fanhubgt/Securityboard/blob/main/README.md
2020.

Security Board Program in Prolog: Research Project on Github.com .

https://github.com/fanhubgt/Securityboard/blob/main/README.md

