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Abstract. With the wide application of Internet of Things (IoT) sys-
tems in the smart ocean, many unmanned surface vehicles (USVs) have
been deployed jointly with unmanned aerial vehicles (UAVs) to monitor
the maritime environment. However, conventional means of maritime
communications fail to provide high-rate services due to the complex
maritime channel conditions and large transmission distance, which will
affect the environmental monitoring performance. In this paper, we pro-
pose a USV-UAV collaborative patrol scheme for maritime environment
monitoring networks. Considering the characteristic of energy concentra-
tion in beamforming, we investigate the joint beamforming and location
deployment optimization problem (BLDO) for UAV relay. Specifically,
we decompose the BLDO problem into two subproblems. In the first
sub-problem, the location deployment of UAV and beam gain allocation
is optimized via an iterative algorithm based on the approximated beam
patterns. The algorithm can effectively reduce the computational com-
plexity of the grid-search method. In the second sub-problem, beamform-
ing optimization is conducted with a high-dimensional constant-modulus
(CM) constraint. A micro-particle swarm optimization-based algorithm
with boundary relaxation (BR−µPSO) is proposed to obtain an optimal
solution. Finally, the simulation results demonstrate that the proposed
algorithms can improve the performance in terms of the achievable sum
rate and the beam gain.

Keywords: UAV · USV · Maritime environment monitoring · Deploy-
ment · Beamforming

1 Introduction

With the rapid development of the maritime economy, oily wastewater, toxicant-
containing wastewater, and domestic solid wastes, etc., pose a serious threat to
ecological environment protection, which is becoming an urgent issue [1]. Yan
et al. [2] deployed a wireless sensor network (WSN) to locate the source of pol-
lution in the urban water supply network. However, WSN is inflexible and has
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limited monitoring range and unsatisfactory adaptability to the complex mar-
itime environment. The existing maritime communication systems typically rely
on satellite communications and very-high-frequency (VHF) communications [3].
However, the high cost of satellite communication and the limited bandwidth of
VHF cannot support the access of multiple acquisition terminals. Therefore, it
is imperative to design efficient data uploading schemes to improve the commu-
nication capacity for maritime environmental monitoring networks.

To increase the communication capacity, multiple antenna technique has been
introduced for maritime communication systems in [4]. Particularly, beamform-
ing (BF) in multiple-input multiple-output (MIMO) system has been considered
as one of the major candidate technologies [6–9]. Beamforming technology pro-
vides the benefits of increased diversity for the BS and user equipment. Smart
antennas enable increase of capacity in wireless communication systems by suc-
cessfully reducing channel interference. Zhu et al. in [6] employed the analog
beamforming to achieve the directional beamforming, which can effectively sup-
press the interference from other users. Su et al. in [7] demonstrated that beam-
forming technique can offer considerable beam gain to overcome the high propa-
gation loss. To further improve the transmission rate, Zhu et al. in [6] and Xiao
et al. in [8] explored the joint power allocation and beamforming for a two-user
downlink and uplink mm-Wave NOMA scenario, respectively. At present, most
of the studies are based on terrestrial communication systems.

Unmanned Aerial Vehicles (UAVs) have been widely employed in emergency
and environmental monitoring tasks in the past few years. However, for the
existing methods on UAV deployment monitoring[9, 10, 12], beamforming has
not been taken into consideration yet. They may suffer from the interference
from the maritime climate and neighboring infrastructures [10]. Considering the
flexibility of UAVs and the advantages of beamforming technology such as anti-
interference and energy concentration, the combination of the two is very promis-
ing [11, 12]. It can not only improve the communication quality of UAV, but also
save communication energy consumption. However, the joint beamforming and
UAV location optimization problem will be more complicated since it is highly
non-convex and involves high-dimensional, highly coupled variable vectors. For
example, Mozaffari et al. in [12] presented a grid-search method to calculate
the maximum achievable rate of each grid intersection point to determine the
approximate optimal location of the UAV. Whereas the algorithm complexity
increases exponentially making it difficult to determine the optimal grid accu-
racy.

The aforementioned beamforming schemes are suitable for terrestrial sys-
tems, yet few contributions have been devoted to the problem of maritime
beamforming systems. When designing the UAV-assisted USV patrol scheme,
the following differences between ocean and land have to be investigated :

• Channel distinction: Maritime propagation environment has unique char-
acteristics such as sparsity, instability and the ducting effect over the sea surface.
Therefore, we need to establish a multipath channel model suitable for the char-
acteristics of the maritime environment.
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• Energy limitation: The offshore relays are usually powered by solar energy
due to the lack of infrastructure. Therefore, we should reduce communication
energy consumption as much as possible.

In order to meet the aforementioned challenges, we investigate the beamform-
ing and location deployment optimization (BLDO) problem for UAV-assisted
maritime environment monitoring networks. Specifically, the energy is concen-
trated in the target USV direction through beamforming technology. Since the
variables are coupled with each other and have high dimensions, the BLDO prob-
lem is decomposed into two sub-problems by introducing the ideal beamforming.
In the first stage, an iterative algorithm based on water injection is proposed to
find the UAV’s optimal position. In the second stage, considering the difficulty of
the constant modulus (CM) constraint and the "curse of dimensionality" of the
high-dimensional problems, a micro-particle swarm algorithm (BR − µPSO) is
proposed based on boundary relaxation to obtain the beamforming vector. Our
main contributions are summarized as follows:

• Beamforming technology is combined with UAV assisted communication
to maximize the achievable sum rate of data uploading from the patrol USVs.
The beam gain of the target USV direction is significantly enhanced, thus solving
the problem of limited maritime communication bandwidth without increasing
hardware cost.

• An iterative algorithm and a particle swarm optimization algorithm based
on boundary relaxation (BR − µPSO) are proposed to solve the UAV location
deployment and beamforming optimization problems, respectively. The results
show that, the energy is concentrated in the direction of target USVs, and the
proposed algorithms can efficiently improve the achievable sum rate and the
beam gain.

The rest of this paper is organized as follows. The system and channel model
of the maritime MIMO system is introduced in Section II. Sections III and IV
describe the deployment and analog beamforming optimization of the hovering
UAV, respectively. The simulation results are presented and discussed in Section
V. Section VI concludes this paper.

Notation: In this paper, In stands for an n × n identity matrix, ()
H , ||,

‖‖ denote Hermitian transpose, the absolute value of a complex number, the
Euclidean norm respectively.

2 System Model and Problem Formulation

2.1 System Model

We consider a UAV-assisted USV patrol scheme for maritime monitoring net-
work as depicted in Fig. 1, where one UAV is responsible for air patrol and the
USVs are responsible for information collection. The network is expected to re-
alize high reliability and low delay in information transmission while increasing
communication capacity. The UAV is equipped with an M -element uniform lin-
ear array (ULA), serving K USVs with a single antenna. To enable multistream
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communications, each antenna branch has a phase shifter and a power amplifier
(PA) to drive the antenna.

For the sake of convenience, we establish a 3-D rectangular coordinate sys-
tem to represent UAV and USVs’ location relationship, where USVs are dis-
tributed on the horizontal plane located at (xk, yk, 0) and the coordinate of the
UAV is (xu, yu, hu). Note that we use orthogonal frequency division multiplex-
ing (OFDM) technology, where each USV occupies an independent frequency to
transmit the information sk ∼ CN (0, 1) to the UAV relay. The kth USV trans-
mits signal si to the UAV with the corresponding transmit power pk, where
E(|si|2) = 1. Then the received signal yUAV ∈ CM×1 at the UAV can be ex-
pressed as

yUAV =

K∑
k=1

HH
k w
√
pksk + n1 (1)

where Hk is channel response vector between the kth USV and the UAV, the
elements of vector n1 represent additive white Gaussian noise (AWGN) with
variance σ2

1 , and w denotes an M × 1 beamforming (BF) vector with CM con-
straint for ULA structure, i.e., |[wk]| = 1√

M
for k = 1, 2, . . . ,M .

Fig. 1: Illustration of a maritime patrol scenario including one UAV, and multiple
USVs.

Due to the lack of scatters in the vast sea area, the line-of-sight (LoS) path
will dominate most of the air-to-sea channels. The Rayleigh fading, generally
analyzed in the terrestrial communication systems, may no longer be suitable
for the maritime environment. Instead, the finite scattering channel [13] could be
more appropriate for the maritime model. Furthermore, the reflection path from
the sea surface may exist in some conditions, resulting in severe multipath effects.
Therefore, a sparse multipath channel based on multipath fading is conceived to
describe the USV-UAV channel in our model. The uplink channel (UL) between
USV and UAV is denoted by hk. Different multipath components (MPCs) have
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different physical receive steering angles, i.e., angles of arrival (AoAs). With
half-spaced ULAs adopted at the receiver, the channel matrix can be expressed
as

ar (φl) =

√
1

M

[
1, ejπφ, · · · , ejπ(M−1)φ

]T
(2)

φl =
xu − xi√

(xu − xk)
2

+ (yu − yk)
2

+ h2
u

(3)

ar (φl) is the antenna array response vector at the UAV, where φl denotes
the real AoA of the lth MPC for the kth USV i.e. φl = cos (AoA), and φl is
within the range of (−1, 1). We only consider the azimuth and neglect elevation
to implement horizontal 2-D beamforming. The extension to 3-D beamforming
by adopting an uniform planar array (UPA) configuration may also be possible.

2.2 Problem Formulation

In this subsection, we aim to maximize the achievable sum uploading rate of all
USVs when the channel is known prior. For each USV, under the constraints of
minimal rate for USVs and antenna structure, the achievable rate Rk is denoted
by

Rk = log2

(
1 +

pk
∣∣hHk w

∣∣2
σ2

)
(4)

where pk is the transmission power at each USV, and σ2 is the power of Gaussian
white noise at ith USV.

∣∣hHk w
∣∣2 denotes the effective channel gain between the

kth USV and UAV. In this problem, the UAV deployment intertwines with the
beamforming design, accordingly, the achievable sum rate maximization problem
can be formulated as

P0 : max
w,xu,yu

K∑
k=1

log2

(
1 +

pk
∣∣hHk w

∣∣2
σ2

)
s.t. C1 :Rk ≥ ζk k = 1, 2 . . . ,K

C2 : |[w]i| =
1√
M

i = 1, 2 . . . , N

C3 : (xu, yu) ∈ D

(5)

where ζk denotes the minimum rate requirement for kth USV, and thus, C1
denotes the QoS requirement for each USV. Meanwhile, |[w]| = 1√

M
is the CM

constraint due to usig the phase shifters in each antenna branch at the UAV.
The optimization variables are the projected coordinates of UAV (xu, yu) and
the beamforming vector w.
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3 Problem Solution

Directly solving the BLDO problem (5) by using the existing optimization tools
is infeasible, because the problem is non-convex, and the UAV position variables
intertwine with the beamforming vector. Since the location of the UAV crucially
affects the channel matrix, we can resort to the approximate beam pattern and
decompose the BLDO problem into two sub-problems that are relatively easy to
solve one by one.

3.1 UAV Deployment and Beam Gain Allocation Sub-Problem

We first resort to approximate beam patterns and try to decompose the deploy-
ment and beamforming variables. Then, we have the following lemma.

Lemma 1 : With the ideal beamforming, the beam gains satisfy

δ1∣∣λ̄1

∣∣2 +
δ2∣∣λ̄2

∣∣2 + · · ·+ δk∣∣λ̄k∣∣2 = M (6)

Note that in the case of ideal beamforming, the beam gains along the USV
directions are fixed with a beam width of K

M , while those along nonuser direc-

tions are all zeros, i.e., there are no side lobes. Then, we have
K∑
k=1

|hH
k w|2
|λ̄k|2 = M ,

where δk=
∣∣aHk w

∣∣2 denotes the antenna beam gain of the kth USV, and
∣∣λ̄k∣∣ =

max
∣∣∣λkm,l∣∣∣, denotes the index of the strongest MPC for USVs. For the kth USV,

the UAV maximizes the effective channel gain by fixed beam direction. It can
be approximated as ∣∣hHk w

∣∣2 ≈ ∣∣λ̄k∣∣2∣∣aHk w
∣∣2 (7)

Therefore, based on Lemma 1, we can rewrite the original achievable sum
rate maximization problem with the beamforming gains, and simplify it to the
problems of UAV deployment and beam gain assignment.

P1 : max
(xu,yu),δk

K∑
k=1

log2

1 +

M∑
m=1

pkm
∣∣λ̄k∣∣2δk
σ2



s.t. C1 :log2

1 +

M∑
m=1

pkm
∣∣λ̄k∣∣2δk
σ2

 ≥ ζm,k k = 1, 2 . . . ,K

C2 :

K∑
k=1

δk∣∣λ̄k∣∣2 = M

C3 : (xu, yu) ∈ D ri ∈ R

(8)
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We impose a threshold ζkm on the SINRkm for reliable decoding(i.e., SINRkm ≥
ζkm). C2 is the constraint on ideal beamforming. At the same time, the CM
constraint can be ignored in the first sub-problem.

The details of the proposed algorithm are presented in Algorithm 1.

We have hereto solved the first subproblem, and obtain an optimal location
of the UAV under the assumption of approximate beamforming.

3.2 Beamforming Optimization Sub-Problem

Substituting the obtained optimal location of UAV to the BLDO problem, we
obtain the beamforming sub-problem. Since the analog beamforming should sup-
port all of the patrol USVs, the principle of beamforming design is to maximize
the array gains for all USVs. However, the CM constraint is not accounted for
in P1, and we consider it in the following beamforming sub-problem P2:

P2 : max
w

K∑
k=1

∣∣hHk w
∣∣2

s.t. C1 :log2

(
1 + ck ·

∣∣aHk w
∣∣2) ≥ ξk k = 1, 2 . . . ,K

C2 :

K∑
k=1

δk∣∣λ̄k∣∣2 = M i = 1, 2 . . . ,M

C3 : |[w]m| =
1√
M

(9)

where ck =

(
P ·|λk|2
δ2

)
is the channel gain coefficient along the strongest MPC.

Problem P2 is clearly non-convex. In order to ensure that the modulus value
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of each element in w is 1
/√

M , we transform it into angle domain, and then
optimize its phase. It has been confirmed that the phase rotation of the BF does
not affect the optimality of this problem. Let w =

(
1
/√

M
)
· ejϕ, then we have∣∣hHk w

∣∣2 = |λk|2 · 1
M

∣∣aHk ejϕ∣∣2.
It has been confirmed that the phase rotation of the BF does not affect

the optimality of this problem. Therefore, the elimination norm operation can
be performed, and aHk e

jϕ is real and non-negative. We proposed a suboptimal
solution, meanwhile, we will provide the optimal solution by relaxing P2 into the
following convex problem:

P3 : max
ϕ

K∑
k=1

aHk e
jϕ

s.t. C1 :log2

(
1 + ck ·

∣∣aHk ejϕ∣∣2) ≥ ξk k = 1, 2 . . . ,K

C2 :

K∑
k=1

δk∣∣λ̄k∣∣2 = M i = 1, 2 . . . ,M

C3 :Im(aHk e
jϕ) = 0

(10)

To solve this problem, some swarm-based algorithms can be considered here,
e.g., particle swarm optimization (PSO) algorithm. However, the performance of
PSO algorithm begins to decline for high-dimensional problems. In this paper,
a micro-particle swarm algorithm with boundary relaxation (BR − µPSO) is
proposed. We transform P3 into an unconstrained one by means of the penalty
function, so we redescribe the constraint of C1 as

gi (ϕ) = log2

(
1 + ck ·

1

M

∣∣aHk ejϕ∣∣2)− ξk ≥ 0 (11)

The objective function can be rewritten as:

P4 : Minimize
ϕ

−
K∑
k=1

aHk e
jϕ+µ

K∑
i=1

[max {0,−gi (ϕ)}]2

s.t. C1 :

K∑
k=1

δk∣∣λ̄k∣∣2 = M i = 1, 2 . . . ,M

C2 :Im(aHk e
jϕ) = 0

(12)

where the penalty function is expressed as

max {0,−gi (ϕ)}=

{
0
−gi (ϕ)

(13)

If ϕ is a feasible solution, the value is 0. If not, the value is −gi (ϕ). Each particle
has a memory for its best found position Pbest and the globally best position
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Gbest. The rate update formula of Gbest:

[V]
t+1
g,n = ω [V]

t
g,n − [X]

t
g,n +[Gbest]n + [rep]

t
g,n (14)

For each iteration, the velocity and position of each particle are updated based
on:

[V]
t+1
j,n = ω [V]

t
j,n + rand() ∗ ([Pbest]j,n− [X]

t
j,n )

+rand() ∗ ([Gbest]n− [X]
t
j,n )+ [rep]

t
j,n

(15)

[X]
t+1
j,n =

{
[X]

t
j,n + [V]

t+1
g,n , [X]

t
j,n = [X]

t
g,n

[X]
t
j,n + [V]

t+1
j,n , else

(16)

The parameter ω is the inertia weight of velocity. [rep]
t
i,n is the repulsion expe-

rienced from K blacklisted solutions. dki = xi− x̂k is a vector pointing from the
blacklisted solution l to the ith particle. The details of the proposed BR−µPSO
algorithm are presented in Algorithm 2.

Due to the equality constraint, the search space forX is high-dimensional. We
relax the search space to a convex set and adjust the particles on the boundaries
of each iteration. The outer and inter boundary is defined as{

X|
∣∣∣[X]i,j

∣∣∣ = dbeyond

}
dbeyond =

1√
M

(17)

{
X|
∣∣∣[X]i,j

∣∣∣ = din

}
din =

t

Tmax

1√
M

(18)

For each iteration, the particles out of the boundary are adjusted onto the bound-
ary, and eventually converge.

4 Simulation Results

In this section, simulation results are presented to demonstrate the performance
of our proposed iterative algorithm for UAV deployment and the BR − µPSO
algorithm for beamforming optimization. We consider a scenario that one UAV
serves multiple patrol USVs. In the simulation experiment, the positions of USVs
are randomly generated. Then we set pk = 35dBm, σ2 = −100dBm and hu =
200m, which are some typical parameters of offshore area [8].

First, we evaluate the performance of the proposed UAV deployment ap-
proach. Fig. 2 compares the random beam pattern with the designed beam pat-
tern by solving problem P1, where we assume the minimum rate constraints for
each USVs are 1, 4, 4, 3 and 3 bps/Hz, respectively. It shows the uplink achiev-
able sum rate and the optimal UAV position comparison between the proposed
iterative algorithm and the grid-search method in the scenario of five USVs.
Fig. 2 (a) shows a 2D scatter plot of the USV-UAV deployment relationship,
which is affected by USVs minimum rate constraints. It can be seen in Fig. 2
(b) that the proposed iterative algorithm has better performance in terms of
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(a) UAV location deployment. (b) The achievable sum rate via Pk.

Fig. 2: Location and performance of UAV deployments.
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the achievable sum rate than the grid-search method. Then, we evaluate the
performance of the proposed beamforming algorithm. The beamforming vector
w is designed to approach the approximate beam gain of each USV. Fig. 3 (a)
shows the comparison between the achievable sum rate via the proposed beam
pattern with different numbers of antennas against Pk,M = 8, 16, 32 and K = 2.
Fig. 3 (b) shows the beam gain comparison result between the random and pro-
posed beamforming. We can observe that the proposed beamforming pattern is
effective, and the beam gains are concentrated on the target USVs’ directions.

(a) The achievable sum rate via Pk. (b) The beam gain with different numbers of
antennas.

Fig. 3: The achievable sum rate gain and beam gain of the proposed beam pat-
terns.

5 Conclusion

This paper has investigated the joint beamforming and location deployment
optimization problem (BLDO) for UAV relay, aiming to maximize the uplink
achievable sum rate of the USV-UAV collaborative patrol scheme for maritime
monitoring network. The original formulated BLDO problem has been decom-
posed into two sub-problems by the approximate beam pattern. The subproblem
of deployment and beam gain allocation sub-problem has been first solved via
the proposed alternating optimization. Then, the beamforming sub-problem has
been tackled by the proposed BR − µPSO algorithm. Simulation results have
shown that the proposed scheme could effectively increase the performance of
the achievable sum rate and beam gain in the USVs direction. For future work,
we will investigate the effect of the unstable beam pointing problem.
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