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Abstract

This study delves into a unique binary pattern found within the well-
known 3n+1 problem, or Collatz conjecture. Through careful analysis of
the steps in the 3n+1 sequence, we have discovered a special binary rep-
resentation that captures the behavior of all positive integers undergoing
this transformation. With this new understanding, we have provided a
solid proof confirming the validity of the 3n+1 problem for all positive
integers. Our method goes beyond the need for extensive computational
confirmation, providing a simple and elegant resolution to a long-standing
mathematical mystery.

1 Introduction

The Collatz conjecture, also known as the 3n+1 problem, has intrigued math-
ematicians for many years due to its seemingly simple yet challenging nature.
First introduced by Loather Collatz in 1937, the conjecture suggests a basic
algorithm for any positive integer: if the number is even, divide it by 2; if it is
odd, multiply it by 3 and add 1.

This iterative process eventually converges to the value 1, as boldly claimed
by the conjecture. Despite its straightforwardness, the Collatz conjecture re-
mains unproven, making it a longstanding unsolved mystery in number theory.
Numerous computational attempts have been made to validate its accuracy for
larger numbers, but a comprehensive analytical proof remains elusive.

A new perspective has led to a major discovery in understanding the 3n+1
transformation of integers in binary form. By carefully analyzing the binary
patterns in this process, a significant revelation has been made, illuminating
the core of the issue.

This research explores a unique viewpoint on the Collatz conjecture. Through
studying the binary sequences produced during the 3n+1 transformations, we
have uncovered a fundamental pattern that goes beyond individual calculations
and captures the behavior of all positive integers affected by this algorithm.

Note that each positive odd integer n, definable as n =
∑x

i=0 4
i, for each

x ∈ Z+, needs to be reduced to one by taking one 3n + 1 step, followed by
2(x+ 1) successive n

2 steps.
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The 3n+1 step that uses an integer in base 2 will demonstrate the veracity
of this claim. [1] [2] [3]

2 Example one

Let n =
∑n

x=0(2)
2i = 21 = 101012, then

101012 × 102 ⇒ 1010102 + 101012 ⇒ 1111112 + 12 = 10000002 = 26

, and

10000002
102

⇒ 1000002
102

⇒ 100002
102

⇒ 10002
102

⇒ 1002
102

⇒ 102
102

= 1.

Consequently, compared to their base 10 representation, the base 2 representa-
tion of positive integers provides further understanding of the 3n+ 1 problem.

Proof

Let O+ be the set of positive odd integers, then

O+ = {x ∈ Z|x = 2y + 1, y ≥ 0, y ∈ Z}.

3 Theorem one

P will stand for the 3n+1 problem. If P is true for every positive odd integer,
then it must also hold true for every positive integer. ∀a ∈ O+ : P (a) ⇒ ∀b ∈
Z+ : P (b)

Proof

First Case:
Let x ∈ Z+, let n = 2x. In order to reduce n to 1, x successive n

2 steps are
needed.

Second Case : Multiplication of an odd integer by a power of two
With n ∈ O+ and x ∈ Z+, let y = 2x · n. In order to get y = n, then x

consecutive n
2 steps are needed.

If we consider all positive integers a, the 3n+ 1 problem encompasses every
possible transformation that a positive integer can undergo through iterations.
Each step either applies the operation 3n+ 1 or removes a factor of 2 through
the n

2 step. Ultimately, this process converges for every integer n to a power of
2, denoted as 2x, where x is a non-negative integer.

However, the transformation from any arbitrary integer n to 2x might not
be immediately clear due to the interplay between the 3n+ 1 and n

2 steps. To
elucidate this process, we can focus solely on the 3n+1 step while compensating
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for the omission of the n
2 step. By adjusting the 3n+1 operation appropriately,

we can still achieve the convergence to 2x for every positive integer, making the
iterative nature of the transformation more apparent.

4 Example Two

Let n = 9 = 10012, then 3n+ 2x produces this pattern:

10012 × 112 ⇒ 110112 + 12 = 111002

111002 × 112 ⇒ 10101002 + 1002 = 1011002

1011002 × 112 ⇒ 1000010002 + 10002 = 1000100002

1000100002 × 112 ⇒ 11001100002 + 100002 = 11010000002

11010000002 × 112 ⇒ 1001110000002 + 10000002 = 1010000000002

1010000000002 × 112 ⇒ 11110000000002 + 10000000002 = 100000000000002 = 213.

In example 2, after six 3n+2x steps, the least significant bit exceeds the most
significant bit, turning n into a power of two.

Definition

The least significant bit of s ∈ Z+, then
LSB = {2r | r ≥ 0, r ∈ Z such that 2r = s

t , t ∈ O+}.
The least significant bit=LSB

4.1 Theorem Two

The 3n+ 1 step is isomorphic to the 3n+ LSB step.

Proof

Let n0 ∈ O+. Let n1 = 3n0 + 1 and n2 = n1

LSB , then 3n1+LSB
3n2+1 = 3n1+LSB

3( n1
LSB )+1

=

LSB
Given the congruence 3n+LSB ≡ 0 (mod 3n+1), we can establish isomor-

phism between the 3n+ LSB step and the 3n+ 1 step.
Two functions make up the pattern in Example 2. The most significant bit

of n or the most significant power of two is increased by the first function, while
the least significant bit of n or the least significant power of two is increased by
the second function.

Let m(x) be the function for repeated multiplication of n by 3 in terms of
x, where x ∈ Z+. Then m(x) = 3x+δn.

Let lsb(x) be the function for repeated multiplication by 4 (3(LSB)+LSB) of
the least significant bit of n in terms of x, where x ∈ Z+. Then lsb(x) = 22(x+δ).

3



5 Definition Two

Let f(x) be the function, in terms of x, x ∈ Z+, for the 3n + LSB step for
n ∈ O+.Then

f(x) = m(x) + LSB(x) = 3(x+δ)n+ 22(x+δ).
Let Tlsb(x) be the function that, for every n ∈ O+, returns the true position

of the least significant bit of the 3n+ LSB step in terms of x ∈ Z+. Next
δ =

∑
x∈Z+ (T lsb(x)− lsb(x))

Example Three

Assume that multiplying nk by 3 produces . . . 001111100 . . .
somewhere in the binary representation of the result; and that the rightmost 1 is LSB =

2x. Let lsb(x) = Tlsb(x). Adding LSB to nk yields . . . 010000000 . . .

δ =

x∑
x

Tlsb(x)− lsb(x)

δ =

x∑
x

(2x+5 − 2x+2)

δ =

x∑
x

(x+ 5− x− 2)

δ =

x∑
x

(3) = 3

Example Four

T lsb(x) ≤ lsb(x)
Assume that the binary representation of the result, after multiplying nk by

3 and adding LSB, is . . . 001111100 . . ., and that the rightmost 1 is LSB = 2x.
Assume TLsb(x) = Lsb(x). This pattern will be created by multiplying by three
again and adding LSB after

. . . 001111100 . . . times 3 plus 2x

. . . 101111000 . . . times 3 plus 2x+1

. . . 001110000 . . . times 3 plus 2x+2

. . . 101100000 . . . times 3 plus 2x+3

. . . 001000000 . . . ,than

δ =

x+3∑
x

Tlsb(x)− lsb(x)

δ =
x+3∑
x

(2x+1 − 2x+2)
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δ =

x+3∑
x

(x+ 1− x− 2)

δ =

x+3∑
x

(−1) = −4

Given:
δ < 0 ∨ δ = 0 ∨ δ > 0

If x is assumed to be x ∈ Z+, then m(x) < lsb(x) indicates that a power of
two is greater than the sum of its powers.

Using Example 2 as an illustration:

m(x)− lsb(x) = 9 · 3(x+2) − 4(x+2) = 0 for x ≈ 5.6377.

The integer after the root necessitates that m(x) < lsb(x). In other words,
it requires six 3n + LSB steps for 9 to converge to 213.

5.1 Theorem Three

There is a positive integer x such that m(x) < lsb(x) for all positive odd integers
n.

For every n ∈ O+,
∃ x in Z+(m(x) < lsb(x))

Proof

Case one

Given: δ ≤ −1, δ ∈ Z.
Assume n ∈ O+ and let m(x)− lsb(x) = 3x−δn− 4x−δ = 0.

x = log(1/n)
log(3/4) + δ.

Therefore, there exists a unique x ∈ R+ such that 3x−δn − 4x−δ = 0 and
∃ ⇒ x ∈ Z+ such that (m(x) < lsb(x)).
Case Two
Given: δ = 0.

Assume n ∈ O+ and let m(x)− lsb(x) = 3xn− 4x = 0.

x = log(1/n)
log(3/4) .

Therefore, there exists a unique x ∈ R+ such that 3xn − 4x = 0 and
∃ ⇒ x ∈ Z+ such that (m(x) < lsb(x)).

Case Three
Given: δ ≥ 1, δ ∈ Z.

Assume n ∈ O+ and let m(x)− lsb(x) = 3x+δn− 4x+δ = 0.

x = log(1/n)
log(3/4) − δ.
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Therefore, there exists a unique x ∈ R+ such that 3x+δn − 4x+δ = 0 and
∃ ⇒ x ∈ Z+ such that (m(x) < lsb(x)).

Since these examples are all-inclusive, it demonstrates that
For every n ∈ O+,

∃ x in Z+(m(x) < lsb(x))

For all n ∈ O+, there exists an x ∈ Z+ such that m(x) < lsb(x) (Theorem
3), therefore f(x) converges to 2y, y ∈ Z+. And since the 3n + LSB step and
the 3n+1 step are isomorphic (Theorem 2), it can be concluded that if a0 = n,
n ∈ O+, then...

ai+1 = { ai/2 for even ai
3ai + 1 for odd ai

converges to 1.
Theorem 1 states that the truth applies to all positive integers since the

3n+1 issue holds true for all positive odd numbers. As n ∈ Z+, if a0 = n, then

ai+1 = { ai/2 for even ai
3ai + 1 for odd ai

converges to 1.

6 Conclusion

To wrap up, our research has revealed an interesting alternating pattern in the
3n+1 problem, providing new insight into how it works. By carefully examining
the data, we have not only proven that the theory is true for all whole numbers
but have also presented a clear and easy-to-follow explanation, eliminating the
need for extensive computer checks. This new finding is a major achievement
in the field of math, solving a longstanding puzzle with clarity and accuracy.
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