F EasyChair Preprint № 13029

Revealing a Binary Pattern Validates 3n+1
 Problem for All Positive Integers

Budee U Zaman

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Revealing a Binary Pattern Validates 3n+1 Problem for All Positive Integers

Budee U Zaman

Abstract

This study delves into a unique binary pattern found within the wellknown $3 \mathrm{n}+1$ problem, or Collatz conjecture. Through careful analysis of the steps in the $3 \mathrm{n}+1$ sequence, we have discovered a special binary representation that captures the behavior of all positive integers undergoing this transformation. With this new understanding, we have provided a solid proof confirming the validity of the $3 \mathrm{n}+1$ problem for all positive integers. Our method goes beyond the need for extensive computational confirmation, providing a simple and elegant resolution to a long-standing mathematical mystery.

1 Introduction

The Collatz conjecture, also known as the $3 \mathrm{n}+1$ problem, has intrigued mathematicians for many years due to its seemingly simple yet challenging nature. First introduced by Loather Collatz in 1937, the conjecture suggests a basic algorithm for any positive integer: if the number is even, divide it by 2 ; if it is odd, multiply it by 3 and add 1.

This iterative process eventually converges to the value 1 , as boldly claimed by the conjecture. Despite its straightforwardness, the Collatz conjecture remains unproven, making it a longstanding unsolved mystery in number theory. Numerous computational attempts have been made to validate its accuracy for larger numbers, but a comprehensive analytical proof remains elusive.

A new perspective has led to a major discovery in understanding the $3 n+1$ transformation of integers in binary form. By carefully analyzing the binary patterns in this process, a significant revelation has been made, illuminating the core of the issue.

This research explores a unique viewpoint on the Collatz conjecture. Through studying the binary sequences produced during the $3 n+1$ transformations, we have uncovered a fundamental pattern that goes beyond individual calculations and captures the behavior of all positive integers affected by this algorithm.

Note that each positive odd integer n, definable as $n=\sum_{i=0}^{x} 4^{i}$, for each $x \in Z^{+}$, needs to be reduced to one by taking one $3 n+1$ step, followed by $2(x+1)$ successive $\frac{n}{2}$ steps.

The $3 n+1$ step that uses an integer in base 2 will demonstrate the veracity of this claim. [1] [2] [3]

2 Example one

Let $n=\sum_{x=0}^{n}(2)^{2 i}=21=10101_{2}$, then

$$
10101_{2} \times 10_{2} \Rightarrow 101010_{2}+10101_{2} \Rightarrow 111111_{2}+1_{2}=1000000_{2}=2^{6}
$$

, and

$$
\frac{1000000_{2}}{10_{2}} \Rightarrow \frac{100000_{2}}{10_{2}} \Rightarrow \frac{10000_{2}}{10_{2}} \Rightarrow \frac{1000_{2}}{10_{2}} \Rightarrow \frac{100_{2}}{10_{2}} \Rightarrow \frac{10_{2}}{10_{2}}=1
$$

Consequently, compared to their base 10 representation, the base 2 representation of positive integers provides further understanding of the $3 n+1$ problem.

Proof

Let O^{+}be the set of positive odd integers, then

$$
O^{+}=\{x \in Z \mid x=2 y+1, y \geq 0, y \in Z\} .
$$

3 Theorem one

P will stand for the $3 \mathrm{n}+1$ problem. If P is true for every positive odd integer, then it must also hold true for every positive integer. $\forall a \in O^{+}: P(a) \Rightarrow \forall b \in$ $Z^{+}: P(b)$

Proof

First Case:

Let $x \in Z^{+}$, let $n=2^{x}$. In order to reduce n to $1, x$ successive $\frac{n}{2}$ steps are needed.

Second Case : Multiplication of an odd integer by a power of two With $n \in O^{+}$and $x \in Z^{+}$, let $y=2^{x} \cdot n$. In order to get $y=n$, then x consecutive $\frac{n}{2}$ steps are needed.

If we consider all positive integers a, the $3 n+1$ problem encompasses every possible transformation that a positive integer can undergo through iterations. Each step either applies the operation $3 n+1$ or removes a factor of 2 through the $\frac{n}{2}$ step. Ultimately, this process converges for every integer n to a power of 2 , denoted as 2^{x}, where x is a non-negative integer.

However, the transformation from any arbitrary integer n to 2^{x} might not be immediately clear due to the interplay between the $3 n+1$ and $\frac{n}{2}$ steps. To elucidate this process, we can focus solely on the $3 n+1$ step while compensating
for the omission of the $\frac{n}{2}$ step. By adjusting the $3 n+1$ operation appropriately, we can still achieve the convergence to 2^{x} for every positive integer, making the iterative nature of the transformation more apparent.

4 Example Two

Let $n=9=1001_{2}$, then $3 n+2^{x}$ produces this pattern:
$1001_{2} \times 11_{2} \Rightarrow 11011_{2}+1_{2}=11100_{2}$
$11100_{2} \times 11_{2} \Rightarrow 1010100_{2}+100_{2}=101100_{2}$
$101100_{2} \times 11_{2} \Rightarrow 100001000_{2}+1000_{2}=100010000_{2}$
$100010000_{2} \times 11_{2} \Rightarrow 1100110000_{2}+10000_{2}=1101000000_{2}$
$1101000000_{2} \times 11_{2} \Rightarrow 100111000000_{2}+1000000_{2}=101000000000_{2}$
$101000000000_{2} \times 11_{2} \Rightarrow 1111000000000_{2}+1000000000_{2}=10000000000000_{2}=2^{13}$.
In example 2, after six $3 n+2 \mathrm{x}$ steps, the least significant bit exceeds the most significant bit, turning n into a power of two.

Definition

The least significant bit of $\mathrm{s} \in Z^{+}$, then
$\mathrm{LSB}=\left\{2^{r} \mid r \geq 0, r \in Z\right.$ such that $\left.2^{r}=\frac{s}{t}, t \in O^{+}\right\}$.
The least significant bit $=\mathrm{LSB}$

4.1 Theorem Two

The $3 n+1$ step is isomorphic to the $3 n+L S B$ step.

Proof

Let $n_{0} \in O^{+}$. Let $n_{1}=3 n_{0}+1$ and $n_{2}=\frac{n_{1}}{\mathrm{LSB}}$, then $\frac{3 n_{1}+\mathrm{LSB}}{3 n_{2}+1}=\frac{3 n_{1}+\mathrm{LSB}}{3\left(\frac{n_{1}}{\mathrm{LSB}}\right)+1}=$ $L S B$

Given the congruence $3 n+\mathrm{LSB} \equiv 0(\bmod 3 n+1)$, we can establish isomorphism between the $3 n+$ LSB step and the $3 n+1$ step.

Two functions make up the pattern in Example 2. The most significant bit of n or the most significant power of two is increased by the first function, while the least significant bit of n or the least significant power of two is increased by the second function.

Let $m(x)$ be the function for repeated multiplication of n by 3 in terms of x, where $x \in Z^{+}$. Then $m(x)=3^{x+\delta} n$.

Let $\operatorname{lsb}(x)$ be the function for repeated multiplication by $4(3(\mathrm{LSB})+\mathrm{LSB})$ of the least significant bit of n in terms of x, where $x \in Z^{+}$. Then $\operatorname{lsb}(x)=2^{2(x+\delta)}$.

5 Definition Two

Let $\mathrm{f}(\mathrm{x})$ be the function, in terms of $\mathrm{x}, x \in Z^{+}$, for the $3 n+$ LSB step for $n \in O^{+}$.Then
$f(x)=m(x)+\operatorname{LSB}(x)=3^{(x+\delta)} n+2^{2(x+\delta)}$.
Let $\operatorname{Tlsb}(\mathrm{x})$ be the function that, for every $n \in O^{+}$, returns the true position of the least significant bit of the $3 n+$ LSB step in terms of $x \in Z^{+}$. Next
$\delta=\sum_{x \in Z^{+}}(T \operatorname{lsb}(x)-\operatorname{lsb}(x))$

Example Three

Assume that multiplying n_{k} by 3 produces ... $001111100 \ldots$
somewhere in the binary representation of the result; and that the rightmost 1 is $\mathrm{LSB}=$ 2^{x}. Let $\operatorname{lsb}(x)=T_{\text {lsb }}(x)$. Adding LSB to n_{k} yields $\ldots 010000000 \ldots$

$$
\begin{gathered}
\delta=\sum_{x}^{x} \operatorname{Tlsb}(x)-\operatorname{lsb}(x) \\
\delta=\sum_{x}^{x}\left(2^{x+5}-2^{x+2}\right) \\
\delta=\sum_{x}^{x}(x+5-x-2) \\
\delta=\sum_{x}^{x}(3)=3
\end{gathered}
$$

Example Four

$T l s b(x) \leq l s b(x)$
Assume that the binary representation of the result, after multiplying n_{k} by 3 and adding LSB, is $\ldots 001111100 \ldots$, and that the rightmost 1 is $L S B=2^{x}$. Assume $T L s b(x)=L s b(x)$. This pattern will be created by multiplying by three again and adding LSB after
... $001111100 \ldots$ times 3 plus 2^{x}
... 101111000... times 3 plus 2^{x+1}
... $001110000 \ldots$ times 3 plus 2^{x+2}
... $101100000 \ldots$ times 3 plus 2^{x+3}
... 001000000 ... , than

$$
\begin{aligned}
\delta & =\sum_{x}^{x+3} \operatorname{Tlsb}(x)-\operatorname{lsb}(x) \\
\delta & =\sum_{x}^{x+3}\left(2^{x+1}-2^{x+2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\delta=\sum_{x}^{x+3}(x+1-x-2) \\
\delta=\sum_{x}^{x+3}(-1)=-4
\end{gathered}
$$

Given:

$$
\delta<0 \vee \delta=0 \vee \delta>0
$$

If x is assumed to be $x \in Z^{+}$, then $m(x)<l s b(x)$ indicates that a power of two is greater than the sum of its powers.

Using Example 2 as an illustration:

$$
m(x)-l s b(x)=9 \cdot 3^{(x+2)}-4^{(x+2)}=0 \text { for } x \approx 5.6377 .
$$

The integer after the root necessitates that $m(x)<l s b(x)$. In other words, it requires six $3^{n}+$ LSB steps for 9 to converge to 2^{13}.

5.1 Theorem Three

There is a positive integer x such that $m(x)<l s b(x)$ for all positive odd integers n.

For every $n \in O^{+}$,

$$
\exists x \text { in } Z^{+}(m(x)<l s b(x))
$$

Proof

Case one

Given: $\delta \leq-1, \delta \in Z$.
Assume $n \in O^{+}$and let $m(x)-\operatorname{lsb}(x)=3^{x-\delta} n-4^{x-\delta}=0$.
$x=\frac{\log (1 / n)}{\log (3 / 4)}+\delta$.
Therefore, there exists a unique $x \in R^{+}$such that $3^{x-\delta} n-4^{x-\delta}=0$ and $\exists \Rightarrow x \in Z^{+}$such that $(m(x)<\operatorname{lsb}(x))$.

Case Two

Given: $\delta=0$.
Assume $n \in O^{+}$and let $m(x)-\operatorname{lsb}(x)=3^{x} n-4^{x}=0$. $x=\frac{\log (1 / n)}{\log (3 / 4)}$.
Therefore, there exists a unique $x \in R^{+}$such that $3^{x} n-4^{x}=0$ and $\exists \Rightarrow x \in Z^{+}$such that $(m(x)<\operatorname{lsb}(x))$.

Case Three

Given: $\delta \geq 1, \delta \in Z$.
Assume $n \in O^{+}$and let $m(x)-\operatorname{lsb}(x)=3^{x+\delta} n-4^{x+\delta}=0$.
$x=\frac{\log (1 / n)}{\log (3 / 4)}-\delta$.

Therefore, there exists a unique $x \in R^{+}$such that $3^{x+\delta} n-4^{x+\delta}=0$ and $\exists \Rightarrow x \in Z^{+}$such that $(m(x)<\operatorname{lsb}(x))$.

Since these examples are all-inclusive, it demonstrates that
For every $n \in O^{+}$,

$$
\exists x \operatorname{in} Z^{+}(m(x)<l s b(x))
$$

For all $n \in O^{+}$, there exists an $x \in Z^{+}$such that $m(x)<\operatorname{lsb}(x)$ (Theorem 3), therefore $f(x)$ converges to $2^{y}, y \in Z^{+}$. And since the $3 n+$ LSB step and the $3 n+1$ step are isomorphic (Theorem 2), it can be concluded that if $a_{0}=n$, $n \in O^{+}$, then...

$$
a_{i+1}=\left\{\begin{array}{cc}
a_{i} / 2 & \text { for even } a_{i} \\
3 a_{i}+1 & \text { for odd ai }
\end{array}\right.
$$

converges to 1 .
Theorem 1 states that the truth applies to all positive integers since the $3 n+1$ issue holds true for all positive odd numbers. As $\mathrm{n} \in Z^{+}$, if $a_{0}=n$, then

$$
a_{i+1}=\left\{\begin{array}{cc}
a_{i} / 2 & \text { for even } a_{i} \\
3 a_{i}+1 & \text { for odd ai }
\end{array}\right.
$$

converges to 1 .

6 Conclusion

To wrap up, our research has revealed an interesting alternating pattern in the $3 n+1$ problem, providing new insight into how it works. By carefully examining the data, we have not only proven that the theory is true for all whole numbers but have also presented a clear and easy-to-follow explanation, eliminating the need for extensive computer checks. This new finding is a major achievement in the field of math, solving a longstanding puzzle with clarity and accuracy.

References

[1] Budee U Zaman. Collatz conjecture proof for special integer subsets and a unified criterion for twin prime identification. 2023.
[2] Budee U Zaman. Exploring the collatz conjecture through directed graphs. 2024.
[3] Budee U Zaman. Validating collatz conjecture through binary representation and probabilistic path analysis. 2024.

