
EasyChair Preprint
№ 10518

Ontology as a Source for Rule Generation

Olegs Verhodubs

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 8, 2023

Ontology as a Source for Rule Generation

Olegs Verhodubs

oleg.verhodub@inbox.lv

Abstract—This paper discloses the potential of OWL (Web

Ontology Language) ontologies for generation of rules. The main

purpose of the paper is to identify new types of rules, which may

be generated from the OWL ontology. Rules, generated from the

OWL ontology, are necessary for the functioning of the Semantic

Web Expert System. It is expected that the Semantic Web Expert

System (SWES) will be able to process ontologies from the Web

with the purpose to supplement or even to develop its knowledge

base.

Keywords—rules; ontologies; semantic web; expert systems;

artificial intelligence

I. INTRODUCTION

The Web changes the way people communicate with each
other, and it lies at the heart of a revolution that is currently
transforming the developed world toward a knowledge society
[1]. Today the Web is used for seeking and making use of
information, searching for and getting in touch with other
people, reviewing catalogs of online stores and ordering
products by filling out forms. These activities are performed by
the user, and they are not supported by software tools
particularly well. Keyword-based search engines, which are the
main software tools for these activities, have several serious
problems. The first problem is low precision. If the main
relevant pages are retrieved, they are of little use if another
30,000 mildly relevant or irrelevant documents are also
retrieved. The next problem is that results are sensitive to
vocabulary. Initial keywords do not get the results we want.
The third problem is that results are single Web pages.
Information is spread over a lot of documents, and it is
necessary to initiate several queries to collect relevant
documents. After that partial information has to be manually
extracted and put together. And despite the growing quality of
keyword-based search engines, someone needs to browse
selected documents and extract the information [1].

Another approach is based on the use of the Semantic Web
technologies. It is more machine – processable, and the
fundamental principle of this approach is to utilize semantic
metadata [2]. Semantic metadata may describe a document or
part of a document. They also may describe entities within the
document. Thus, the metadata is semantic, that is, it tells about
the content of a document. This differs from the today’s Web,
encoded in HTML (HyperText Markup Language), which
purely describes the format in which the information should be

presented [2], and thus the content of the today’s Web is
formatted for human readers rather than programs.

At the heart of all Semantic Web applications is the use of
ontologies. Ontologies are an expression of semantic metadata.
Ontology formally describes a domain of interest. It consists of
a finite list of terms and the relationships between them. OWL
specification endorsed by W3C (World Wide Web
Consortium), and it is intended for ontology development [2].

Ontologies may be useful not only to specify terms and
relationships between them, that is, to represent knowledge. It
was concluded that it was possible to generate rules from OWL
ontologies [3]. There were investigated several cases when
OWL ontology code fragments could be transformed to rules.
But investigated cases were not exhaustive. In this connection
the main purpose of this paper is to identify new types of rules,
which may be generated from the OWL ontology, in order to
turn it into full-fledged and self-sufficient resource for rule
generation. Generated rules are necessary for construction or
supplementation of the Semantic Web Expert System (SWES)
knowledge base.

The final goal of the research is to develop the SWES.
SWES is a new expert system, which will be capable to use
OWL ontologies from the Web, to generate rules from them
and to supplement its knowledge base in automatic mode [4].

The paper is organized as follows. The next section shows
OWL code fragments, which can be transformed to rules.
Section III gives a classification of generated rules. The last
section presents conclusions and ideas for future work.

II. GENERATION OF RULES FROM ONTOLOGIES

There are several languages for coding rules. They are
RuleML (Rule Markup Language), R2ML (REWERSE Rule
Markup Language), SWRL (Semantic Web Rule Language),
RIF (Rule Interchange Format). Rules in these languages are
defined by the user directly. But when we talk about the task of
rule generation from OWL ontologies, we mean “net” OWL
ontology. Here “net” OWL ontology means ontology without
using any rule languages. The basic idea is to determine OWL
ontology code fragments, which can be transformed to rules
[3]. This idea had already been presented, and there were
described several cases when OWL ontology code fragments
could be transformed to rules [3]. However it is possible to
investigate some other cases, when OWL ontology code

fragments can be transformed to rules. Let us take them in
order.

When a class has properties, it is possible to generate a rule.
For instance, there is “Car” class with two properties “Wheel”
and “Engine” (Fig. 1):

Fig. 1. “Car” class with two properties.

It is possible to generate the following rule:

IF Car THEN Wheel and Engine (1)

This rule can be generated from the following OWL code
fragment:

<owl:Class rdf:ID="#Car "/>
 <owl:DatatypeProperty rdf:ID="Wheel">
 <rdfs:domain rdf:resource="#Car "/>
 <rdfs:range rdf:resource="xs:string"/>
 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Engine">
 <rdfs:domain rdf:resource="#Car"/>
 <rdfs:range rdf:resource="xs:string"/>
 </owl:DatatypeProperty>

Another case is when ontology has two equivalent classes. For
example, there is “Car” class and class “Auto”, which is
equivalent to class “Car”. Class “Car” has “part of” relation to
class “Vehicle” (Fig. 2.):

Fig. 2. Two equivalent classes “Car” and “Auto”.

It is possible to generate the following rule from Fig. 2:

IF Car equivalent Auto THEN (“part of” Vehicle) ∈ Auto (2)

This rule can be generated from the following OWL code
fragment:

<owl:Class rdf:ID="Auto">
 <owl:equivalentClass>

 <owl:Class rdf:ID="Car"/>
 </owl:equivalentClass>
</owl:Class>

<owl:Class rdf:ID="Car">
 <rdfs:subClassOf rdf:resource="#Vehicle"/>

</owl:Class>
--------------------------- OR ------------------------
<owl:Class rdf:ID="Auto">
 <owl:sameAs rdf:resource="# Car"/>
</owl:Class>
<owl:Class rdf:ID="Car">
 <rdfs:subClassOf rdf:resource="#Vehicle"/>
</owl:Class>

In the case when there is a relation between two classes it is
also possible to generate a rule. For example, there are “Man”
and “House” classes and also “liveIn” relation between these
two classes (Fig.3.):

Fig. 3. Two concepts “Man” and “House” has relation “liveIn”

between them.

It is possible to generate such rule:

IF (liveIn House) THEN Man, (3)

Let us explain the rule. This rule means that if there is some
instance which “liveIn House” then this instance belongs to
class “Man”. This rule can be generated from the following
OWL code fragment:

<owl:ObjectProperty rdf:ID="liveIn">
 <rdfs:domain rdf:resource="#Man"/>
 <rdfs:range rdf:resource="#House"/>
</owl:ObjectProperty>

The next case is the case when there are three classes “House”,
“City”, “Country” and there is “part of” relation between the
“House” and the “City” classes, and also there is “part of”
relation between “City” and “Country” classes (Fig. 4):

Fig. 4. “House” class is part of “City” class and “City” class is
part of “Country” class.

Class: Car

 Property: Wheel

 Property: Engine

Class: Man

Class: House

liveIn

Class: City

Class: Country

part of

Class: House

part of

Class: Car

Class: Auto

equivalent

Class: Vehicle

part of

This rule can be generated as follows:

IF (House “part of” City) and (City “part of” Country)

THEN (House “part of” Country), (4)

The rule means that if there is the first class, which is part of
the second class, and the second class is part of the third class
then the first class is part of the third class. Such rule can be
generated from the following OWL ontology code fragment:

<owl:Class rdf:ID="House">
 <rdfs:subClassOf rdf:resource="#City"/>
</owl:Class>
<owl:Class rdf:ID="City">

 <rdfs:subClassOf rdf:resource="#Country"/>
</owl:Class>
--------------------- OR ----------------------
<owl:Class rdf:ID="House">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="City"/>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="City">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Country"/>
 </rdfs:subClassOf>
</owl:Class>
----------------------- OR ----------------------
<owl:Class rdf:ID="House">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#City"/>

 </rdfs:subClassOf>
</owl:Class>
<owl:Class rdf:ID="City">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Country"/>
 </rdfs:subClassOf>
</owl:Class>

One more case which can provide with rules is when there are

three classes and two relations between them. One of these

relations is “part of” relation. For instance, there are “Man”,

“House”, “City” classes and “liveIn” relation between “Man”,

“House” classes. There also is “part of” relation between

“House” and “City” classes (Fig.5):

Fig. 5. “Man”, “House”, “City” classes and “liveIn”, “part of”
relations between them.

It is possible to generate the rule:

IF (Man “liveIn” House) and (House “part of” City)

THEN (Man “liveIn” City), (5)

This rule means that if there are three classes, where there is
some relation between the first and the second classes and there
is “part of” relation between the second and the third classes,
then there is relation between the first and the third classes such
as between the first and the second classes. This rule can be
generated from the following OWL ontology code fragment:

<owl:Class rdf:ID="House">
 <rdfs:subClassOf rdf:resource="#City"/>
</owl:Class>
<owl:ObjectProperty rdf:ID="liveIn">
 <rdfs:domain rdf:resource="#Man"/>
 <rdfs:range rdf:resource="#House"/>
</owl:ObjectProperty>

--------------------- OR ----------------------
<owl:Class rdf:ID="House">
 <rdfs:subClassOf>
 <owl:Class rdf:ID="City"/>
 </rdfs:subClassOf>
</owl:Class>
<owl:ObjectProperty rdf:ID="liveIn">
 <rdfs:domain rdf:resource="#Man"/>

 <rdfs:range rdf:resource="#House"/>
</owl:ObjectProperty>
----------------------- OR ----------------------
<owl:Class rdf:ID="House">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#City"/>
 </rdfs:subClassOf>
</owl:Class>

<owl:ObjectProperty rdf:ID="liveIn">
 <rdfs:domain rdf:resource="#Man"/>

 <rdfs:range rdf:resource="#House"/>
</owl:ObjectProperty>

The following case is when two properties are defined and one
of them is the subproperty of another one. For example, there is
a property “hasFather”, which is the subproperty of property
“hasParent” (Fig. 6.):

Fig. 6. Property “hasFather” is subproperty of property
“hasParent”.

It is possible to generate the following rule:

IF hasFather and “subproperty of” THEN hasParent, (6)

Let us explain this rule. The rule means that if there is an

instance of property “hasFather” and the property “hasFather”

is the subproperty of property “hasParent” then this instance
belongs to the property “hasParent”. This rule can be

generated from the following OWL code fragments:

<owl:ObjectProperty rdf:ID="hasFather">

Class: House

Class: City

part of

Class: Man

liveIn

Property: hasFather

Property: hasParent

subproperty
of

 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
</owl:ObjectProperty>

When ontology has a symmetric property it is possible to
generate several rules. For example, there are “Programmer”
and “Engineer” classes and also the symmetric property
“colleagueOf” between these classes (Fig.7.):

Fig. 7. Property “colleagueOf” between “Programmer” and
“Engineer” classes.

It is possible to generate such rules:

IF Programmer THEN (colleagueOf Engineer), (7)

IF Engineer THEN (colleagueOf Programmer), (8)

The first rule means that if there is an instance of class
“Programmer” then this instance has relation “colleagueOf” to
the class “Engineer”. The second rule means that if there is an
instance of class “Engineer” then this instance has relation
“colleagueOf” to the class “Programmer”. These rules can be
generated from the following OWL code fragments:

<owl:SymmetricProperty rdf:ID="colleagueOf">
 <rdfs:domain rdf:resource="#Programmer"/>
 <rdfs:range rdf:resource="#Engineer"/>

</owl:SymmetricProperty>

The next case of rule generation is when ontology has a
transitive property. For instance, there is a transitive property
“subAreaOf” between “Latgale”, “Latvia” and “EU” classes
(Fig. 8.):

Fig. 8. Transitive property “subAreaOf” between three classes.

It is possible to generate the rule:

IF (Latgale “subAreaOf” Latvia) and (Latvia “subAreaOf” EU)

THEN (Latgale “subAreaOf” EU), (9)

This rule means that if, for example, there are “Latgale”,
“Latvia”, “EU” classes, and there are two “subAreaOf”
transitive relations between “Latgale” and “Latvia” and also

“Latvia” and “EU” classes, then there is “subAreaOf” relation
between “Latgale” and “EU” classes. This rule can be
generated from the following OWL code fragments:

<owl:Class rdf:ID="Latgale">
 <subAreaOf>
 <owl:Class rdf:ID="Latvia">
 </subAreaOf>
</owl:Class>
<owl:Class rdf:ID="EU"/>
<owl:Class rdf:about="#Latvia">
 <subAreaOf rdf:resource="#EU">

</owl:Class>
<owl:TransitiveProperty rdf:ID="subAreaOf">
 <rdf:type
rdf:resource=http://www.w3.org/2002/07/owl#ObjectProperty/>
</owl:TransitiveProperty>
----------------------- OR ----------------------
<owl:Class rdf:ID="Latgale">
 <subAreaOf rdf:resource="#Latvia">
</owl:Class>

<owl:Class rdf:ID="EU"/>
<owl:Class rdf:ID="Latvia">
 <subAreaOf rdf:resource="#EU"/>
</owl:Class>
<owl:TransitiveProperty rdf:ID="subAreaOf">
 <rdf:type
rdf:resource=http://www.w3.org/2002/07/owl#ObjectProperty/>
</owl:TransitiveProperty>

When ontology has a class, which has one “partOf” relation,
then it is possible to generate rule. For instance, there is “City”
class, and it has only one “partOf” relation (Fig.9.):

Fig. 9. The only one “part of” relation of class “City”.

It is possible to generate the following rule:

IF City and only one “part of” THEN (more “part of” ∈ City), (10)

Let us explain this rule. If there is a class “City”, which has
only one “part of” relation, then it has one or more “part of”
relations, too. That is, the “City” class has not only one
“House” part, but one or more other parts. This rule can be
generated from the following OWL code fragments:

<owl:Class rdf:ID="House">
 <rdfs:subClassOf rdf:resource="#City"/>
</owl:Class>
--------------------- OR ----------------------
<owl:Class rdf:ID="House">

 <rdfs:subClassOf>
 <owl:Class rdf:ID="City"/>
 </rdfs:subClassOf>
</owl:Class>
----------------------- OR ----------------------
<owl:Class rdf:ID="House">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#City"/>

Class: Programmer

Class: Engineer

colleagueOf

Class: House

Class: City

part of

Class: Latgale

Class: Latvia

subAreaOf

Class: EU

subAreaOf

http://www.w3.org/2002/07/owl#ObjectProperty
http://www.w3.org/2002/07/owl#ObjectProperty

 </rdfs:subClassOf>
</owl:Class>

In the case when there is a relation between two classes it is
also possible to generate a rule. For example, there are “Fox”
and “Hole” classes and also “liveIn” relation between these
two classes (Fig.10.):

Fig. 10. Classes “Fox”, “Hole” and relation “liveIn” between
them.

It is possible to generate this rule:

IF Fox and Hole THEN liveIn, (11)

The rule means that if there are instances of “Fox” and “Hole”
classes, then there is “liveIn” relation between these instances.
This rule can be generated from the following OWL code
fragment:

<owl:ObjectProperty rdf:ID="liveIn">
 <rdfs:domain rdf:resource="#Fox"/>
 <rdfs:range rdf:resource="#Hole"/>
</owl:ObjectProperty>

The following case is when ontology has a restriction with the
value constraint “owl:allValuesFrom”. For instance, there is a
“hasPass” restriction with “owl:allValuesFrom” value
constraint, which equals to the class “Citizen” (Fig. 11.):

Fig. 11. “hasPass” property has values of class “Citizen”, only.

It is possible to generate the following rule:

IF not Citizen THEN not hasPass, (12)

Let us explain the rule. If there is some instance, which does
not belong to the “Citizen” class, then this instance does not
apply to the property “hasPass”. The rule can be generated
from the following OWL ontology code fragment:

<owl:Restriction>
 <owl:onProperty rdf:resource="#hasPass" />
 <owl:allValuesFrom rdf:resource="#Citizen" />
</owl:Restriction>

In the case when there are three classes and one of them is an
intersection of other two classes it is possible to generate a rule.
For example, there are “Human”, “Man” and “Male” classes.
The class “Man” is intersection of the “Human” and “Male”
classes (Fig.12.):

Fig. 12. Intersection of classes “Human” and “Male”.

It is possible to generate the following rule:

IF Man THEN Human and Male, (13)

This rule means that if there is an instance of class “Man”, then
this instance belongs to the classes “Human” and “Male”. This
rule can be generated from the following OWL ontology code
fragment:

<owl:Class rdf:ID="Man">
<owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Male"/>
 <owl:Class rdf:about="#Human"/>
</owl:intersectionOf>

</owl:Class/>

The following case of rule generation is when ontology has a
property with a “owl:inverseof” construct. This construct is
used to define an inverse relation between properties. For
example, there are two classes “Human” and “Plane”. There is
a relation “owns” and an inverse relation “is_owned_by”
between them (Fig.13.):

Fig. 13. “Owns” property and “is_owned_by” inverse property.

It is possible to generate such rules:

IF Human THEN (owns Plane), (14)

IF Plane THEN (is_owned_by Human), (15)

The first rule means that if there is some instance of “Human”,
then this instance has relation “owns” to class ”Plane”. The
second rule means that if there is some instance of “Plane”,
then this instance has relation “is_owned_by” to class
“Human”. These rules can be generated from the following
OWL ontology code fragment:

<owl:ObjectProperty rdf:ID="owns">
 <owl:inverseOf rdf:resource="#is_owned_by"/>
 <rdfs:domain rdf:resource="#Human"/>
 <rdfs:range rdf:resource="#Plane"/>
</owl:ObjectProperty>

Class: Fox

Class: Hole

liveIn

Property: hasPass

Class: Citizen

allValuesFrom

Class: Human

Class: Male

Class: Man

is a is a

Class: Human

Class: Plane

owns

is_owned_by

So, OWL ontology code fragments, which could be
transformed to rules, were discussed here. It is planned that
SWES will look for OWL ontologies in the Web and will
develop its knowledge base [4]. That is, when needed ontology
is found, SWES will look for such code fragments in the
ontology and will form the knowledge base. In such a way, not
simply information, but knowledge about interested domain
with the possibility of inference is collected. Thus, SWES will
serve as an expert system shell, which will receive a request
from the users, build its own knowledge base according to the
user’s inquiry and render the expert help in the area of the
domain [4].

III. CLASSIFICATION OF GENERATED RULES

Presented OWL ontology code fragments as other OWL
ontology code fragments, described in [3], have resulted in
rules. But these rules differ from each other. In this connection
it is necessary to understand the difference of generated rules
and hence to classify these rules. For a start, existing rule
classifications have to be investigated, because it is possible
that one of existing classifications may be applied to generated
rules from OWL ontologies.

In general there are several classifications of rules. One of
them breaks rules up into the following categories [8]:

 Relationship;

 Recommendation;

 Directive;

 Variable;

 Uncertain;

 Meta rules.

Relationship rules are used to express a direct occurrence
relationship between two events. For example, if you hear a
loud sound, then the silencer is not working. Recommendation
rules offer a recommendation on the basis of some known
information. For instance, if it is raining, then bring an
umbrella. Directive rules are like recommendations rule, but
they offer a specific line of action, as opposed to the `advice' of
a recommendation rule. For example, if it is raining and you
don't have an umbrella, then wait for the rain to stop. If the
same type of rule is to be applied to multiple objects, we use
variable rules, or in other words rules with variables. For
instance, if X is a Student and X's GPA>3.7 then place X on
honor roll. Such rules are called pattern-matching rules. The
rule is matched with known facts and different possibilities for
the variables are tested, to determine the truth of the fact.
Uncertain rules introduce uncertain facts into the system. The
example of such rule is: if you have never won a match, then
you will most probably not win this time. In this classification
meta rules describe how to use other rules. For example, if you
are coughing and you have chest congestion, then use the set of
respiratory disease rules [8].

One more classification divides rules into three categories.
These categories are the following [9]:

 Knowledge declarative rules;

 Inference procedural rules;

 Meta rules.

Knowledge declarative rules state all the facts and relationships
about the problem. For instance, if inflation rate declines, then
the price of gold goes down. These rules are a part of the
knowledge base. Inference procedural rules advise on how to
solve a problem, while certain facts are known. For example, if
the data needed is not in the system, then request it from the
user. These rules are part of the inference engine. Meta rules
are necessary for making rules. Meta rules reason about which
rules should be considered for firing. For example, if the rules
which do not mention the current goal in their premise, and
there are rules which do not mention the current goal in their
premise, then the former rule should be used in preference to
the latter. Meta rules specify, which rules should be considered
and in which order they should be invoked [9].

 There is the RuleML (Rule Markup Language) hierarchy of
rules [10]. It consists of reaction rules, integrity constraints,
derivation rules and facts (Fig. 13.).

Fig. 13. The RuleML hierarchy of rules [10].

Reaction rules typically consist of an event, which starts the
execution of the rule, conditions, which are necessary to
execute an action, the action itself and also pre- and post-
conditions. For example, a trigger in SQL (Structured Query
Language) is a typical reaction rule. Integrity constraints are
special reaction rules, which signal inconsistency, when certain
conditions are fulfilled. An example of such rule is the
following: confirmation of a booking for a room takes into
account the requested room type and the requested date.
Derivation rules are the rules, which assert a conclusion when
certain conditions are fulfilled. An example of such rule is: a
bus is available for rental if it is not assigned to any client.
Facts are special derivation rules, which have empty
conjunction of conditions [10].

It is possible to state that no one of listed above rule
classification is not suitable for classification of rules, which
are generated from OWL ontology. The criterion here is the
fact that using existing classifications, generated rules are
distributed very irregularly. Thus, it is necessary to work out

rule classification specifically for rules, obtained from
ontologies. Considering all the rules, obtained from OWL
ontologies, these rules may be divided into the following
categories:

 Identifying rules;

 Specifying rules;

 Unobvious rules or rules, generated from hidden
OWL ontology components;

 Meaning enriching rules.

The first category of rules is identifying rules. Identifying
rule is the rule, which determines something based on some
characteristics. For example, rules (3), (6), (9) and (1) in [3] are
identifying rules. The second category of rules is specifying
rules. Such rules are necessary to precise something if this
something is known. That is, specifying rules allow knowing
the details of a particular object. For instance, rules (1), (11),
(13) are specifying rules. The next category is unobvious rules
or rules, generated from hidden ontology components. Hidden
ontology components are components, which are not presented
in ontology, but may be added based on the logic of ontology.
For instance, rules (2), (4), (5), (10) are unobvious rules. The
last rule category is meaning enriching rules. Such rules enrich
existing knowledge with new details. For example, (7), (8),
(12), (14), (15) rules are meaning enriching rules.

It is necessary to note that rules are generated from OWL
ontology at the same time without reference to rule category.
The process of rule generation starts after merging of OWL
ontologies, which are found in the Web, into a single OWL
ontology. In turn, SWES looks for OWL ontologies in the Web
after receiving a request from the user [5]. The process of
ontology merging has two purposes. The first purpose is to
obtain single and complete OWL ontology. This is made based
on technical reasons, because processing of a single OWL
ontology is embedded in Jena in contrast to the processing of
multiple OWL ontologies. It should be reminded that the Jena
framework has been chosen for implementation as the SWES
inference engine [6]. The second purpose of ontology merging
is to assign the values of membership function to OWL
ontology components as classes, properties, relations. The Jena
framework is not designed to work with fuzzy values that is
why this task and its solution will be described separately [7].

IV. CONCLUSION

This paper describes new kinds of rules, which can be
generated from OWL ontology code fragments. Existing rule
classifications are examined, and the original classification for
generated rules is developed. Thus, this paper continues to
develop the idea of OWL ontology transformation to rules.
This is necessary for the Semantic Web Expert System, which

will use OWL ontologies from the Web, generate rules from
them and supplement its knowledge base [4].

It should be noted that the task of rule generation from
OWL ontologies can be solved in different ways. The way,
described in this paper and in one of the previous papers [3], is
the simplest way for the solution of this task. This way is based
on the OWL ontology code fragment patterns, which can be
transformed to rules. Hence, this way of rule generation is a
static way in the sense that only certain kinds of rules can be
generated. This may not always be sufficient or acceptable. In
any case the SWES has to own the way of all rule generation
from OWL ontology. The idea is to utilize some other
possibilities, which may be useful to solve this task, and this
way will be described in one of the following papers. Future
papers will be dedicated to some other tasks, which are derived
from the problem of rule generation from OWL ontologies,
too.

In general the Semantic Web Expert System is close to
implementation. Merging of OWL ontologies into single
ontology, generation of rules from OWL ontology as well as
Jena framework adaptation for fuzzy inference subroutines
have already been implemented using Java programming
language. There is an understanding of how to implement the
task of OWL ontology search in the Web. Thus, it is necessary
to work out the subsystem of communication with the user and
to assemble all parts of the SWES into a single system.

ACKNOWLEDGEMENTS
This work has been supported by my family and my
friends.

REFERENCES

[1] G. Antoniou, F. van Harmelen, “A Semantic Web Primer,” 2nd ed., The

MIT Press, 2008

[2] J. Davis, R. Studer, P. Warren, “Semantic Web Technologies Trends and

Research in On-tology-based Systems,” John Wiley & Sons Ltd,

Chichester, 2006

[3] O. Verhodubs, J. Grundspeņķis, “Evolution of Ontology Potential for
Generation of Rules,” Proceedings of the 2nd International Conference

on Web Intelligence, Mining and Semantics, Craiova, 2012

[4] O. Verhodubs, J. Grundspeņķis, “Towards the Semantic Web Expert

System,” RTU Press, Riga, 2011

[5] O. Verhodubs, J. Grundspenkis, “Ontology merging in the context of a

Semantic Web Expert System,” Springer, Saint-Petersburg, 2013

[6] O. Verhodubs, J. Grundspenkis, “Comparison of ontology reasoning

systems for SWES,” in proceedings

[7] O. Verhodubs, “Adaptation of Jena framework for fuzzy reasoning,” in

proceedings.

[8] Zafar M. Alvi, “Artificiall Intelligence,” Virtual University of Pakistan

[9] http://www.myreaders.info/html/artificial_intelligence.html

[10] M. V. Milanovic, “Modelling rules on the Semantic Web,” Master

thesis, Belgrade, 2007

[11]

http://www.myreaders.info/html/artificial_intelligence.html

