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Abstract

We propose a hyper-domain semantics to analyze the group reading of epistemic modals
according to which the relevant quantificational base for modals is not represented by a
single aggregated information state but rather by a set of information states. The resulting
framework allows us to capture what we call “epistemic pseudo-agreements”. Additionally,
to further investigate the corresponding logic of our hyper-domain semantics, we devise
a translation of the consequence relation in our hyper-domain semantics into a new logic
called “Logic of Epistemic Disagreement” interpreted over possibility models.

1 Introduction
A key issue for any semantics for epistemic modals [6, 14, 11, 13] is to identify the relevant
body of information that supplies a quantificational base for the modal operator. Epistemic
disagreements are vivid illustrations of this:

(1) John: Alice might be at the party.
Mary: No, that’s not true. She’s just tested positive for Covid this morning.

According to [12], there are three different readings of the might-claim uttered by John. On
John’s solipsistic reading, John’s assertion of the might-claim is warranted since its prejacent
is compatible with what John knows. On Mary’s solipsistic reading, the quantificational base
is supplied by what Mary knows, and since she knows that Alice is not at the party, this is, in
part, what warrants her rejection of John’s might-claim. Finally, there is the group reading in
which the quantificational base for the might-claim is derived from the distributed knowledge of
John and Mary. The distributed knowledge of John and Mary is what is known after they each
share everything that they know (about who is at the party)—i.e., the distributed knowledge
is derived from the intersection of the sets of worlds representing John’s private information
and the set of worlds representing Mary’s private knowledge. Since Alice being at the party is
not consistent with John and Mary’s pooled information, using the distributed knowledge of
John and Mary as the quantificational base of the might-claim explains Mary’s rejection of the
might-claim and predicts that John will retract his claim.

One problem with using distributed knowledge for the group reading of epistemic modals is
that it incorrectly predicts disagreement about might-claims in what we call epistemic pseudo-
agreement dialogues:

(2) (Context: John knows that Alice is at the party but has no information on Bob; Mary on
the other hand knows that either Alice or Bob is at the party but not both.)
John: Bob might be at the party.
Mary: I agree.

John’s knowledge can be represented by two possible worlds, one in which both Alice and Bob
are at the party and one in which Alice is at the party but Bob is not. Mary’s knowledge can
be represented by two possible worlds, one in which Alice is at the party but Bob is not at the
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party, and one in which Bob is at the party but Alice is not at the party. The intersection of
these two sets of possible worlds consists of a single possible world in which Alice is at the party
but Bob is not at the party. Nevertheless, even though Bob being at the party is inconsistent
with the distributed knowledge of John and Mary, Mary agrees with John’s might-claim.

Von Fintel and Gillies [12] proposed the following additional constraint on the group infor-
mation state to handle the above problem of pseudo-agreement:

Defeasible Closure: If [the hearer] H knows that φ is compatible with what x knows, for
each x ∈ G, then it is reasonable for H to defeasibly infer that φ is compatible with what
[the group] G knows.

Assuming that Mary knows what information John has about who is at the party, she
can defeasibly infer that Bob being at the party is compatible with what the group knows.
So, Defeasible Closure does address the problems that arise from naively using distributed
knowledge for group readings of epistemic modals. However, since the fix offered by defeasible
closure requires the discourse participants to deliberately draw the inference that φ is compatible
with what other people know, its application is limited. For instance, suppose that in (2), Mary
has good reasons to suspect that John may not truthfully report what he really knows. In this
case, she will not defeasibly infer that Bob’s being at the party is compatible with what John
knows, even if, in this particular instance, John is indeed being truthful and his information is
compatible with Bob being at the party. Nonetheless, it seems she can still assent to John’s
might-claim in (2).

One response to the above discussion is to simply dispense with the group reading of epis-
temic modals. However, we argue that there are utterances that only make sense with a group
reading of epistemic modals. Consider the following sentence adapted from DeRose [2]:

(3) I don’t know whether John might have cancer; only the doctor knows.

This sentence is perfectly natural in a context where the doctor has conducted a screening test
on John that will conclusively rule out cancer if the test is negative, but will not conclusively
affirm that he has cancer if the test is positive. However, this sentence would not make sense if
the relevant body of information for the might-claim is based on the speaker’s knowledge. One
plausible interpretation of (3) is that the might-claim is based on the doctor’s information as
illustrated by the following paraphrase:

(4) I don’t know whether John’s having cancer is compatible with what the doctor knows;
only the doctor knows.

The problem with this reading, however, is that it predicts that (5) and (6) have the same
meaning, and thus incorrectly predicts that (5) is felicitous.

(5) # I know John doesn’t have diabetes, but I don’t know whether John might have cancer
and diabetes.

(6) I know John doesn’t have diabetes, but I don’t know whether John’s having cancer and
diabetes is compatible with what the doctor knows.

Correctly predicting that (5) is infelicitous seems to require a group reading for the might-
claim taking into account both the doctor’s and the speaker’s information. Thus, a group
reading of the epistemic modals is needed for (4) to be a correct paraphrase of (3) and for (5)
to be infelicitous. In this paper, rather than using a single information state to represent group
knowledge (e.g., the distributed knowledge of the group), we propose to represent the group
information state as a set of information states each corresponding to the private information
of a member of the group.
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2 Preliminary: Domain Semantics for Epistemic Modals
Our formal model builds on Yalcin’s domain semantics [14]. One of the main motivations of
domain semantics is to capture epistemic contradictions:

(7) # John doesn’t have cancer but he might have cancer.
(8) # Mary supposes that John doesn’t have cancer but he might have cancer.

Sentences of the form ¬p ∧◇p and p ∧◇¬p (as well as the variants that swap the order of the
conjuncts) intuitively feel contradictory even in an embedded environment (as in (8)). Domain
semantics predicts that both (7) and (8) are contradictory. Formulas are interpreted at pairs
⟨w, s⟩ where w is a possible world and s is an information state (a set of possible worlds). Given
a world-information-state pair ⟨w, s⟩, the atomic propositions and the Boolean connectives are
interpreted using the possible world w and a valuation function as usual, and modalities quantify
over the worlds in the information state s: for instance, w, s ⊩ ◇p if, and only if, there exists
w′ ∈ s such that w′, s ⊩ p. That is, ◇p tests that the prejacent is compatible with the given
body of information specified by s. Say that an information state s accepts (or supports) a
formula φ, denoted s ⊧ φ, if, and only if, w, s ⊩ φ for all w ∈ s. Then, sentences such as (7) are
unassertable since any information state that accepts ¬p will fail to accept ◇p, and vice versa.

To see why sentences such as (8) are unassertable, note that the attitude verb ‘i suppose’
shifts the information state to an information state representing what the agent i supposes:
w, s ⊩ i supposes φ if, and only if, ∀w′ ∈ Sw

i ∶ w′, Sw
i ⊩ φ, where Sw

i is the body of information
that corresponds to what i supposes at w. It is not difficult to see that this will predict that
sentences such as (8) are unassertable. However, as Yalcin noted [14], the semantics sketched
above has difficulty explaining why sentences such as (3) of the form ‘I don’t know whether
might p’ are not contradictory. Furthermore, as pointed by Dorr and Hawthorne [3], shifting to
the knowledge state of someone other than the speaker does not help since for all information
states s, one of the following must be true: (i) for all w′ ∈ s, w′, s ⊩ ◇φ or (ii) for all w′ ∈ s,
w′, s ⊩ ¬ ◇ φ. Hence, the speaker cannot both fail to know that might p and know that not
might p. We address this problem with domain semantics by moving to hyper-domains (i.e.,
sets of information states) as explained in the next section.

3 Hyper-Domain Semantics for Epistemic Modals
Suppose thatW ≠ ∅ and w ∈W and Σ ⊆ ℘(W ). Formulas are interpreted at pairs ⟨w,Σ⟩, where
w is a possible world and Σ is a set of information states (called a hyper-domain). Each element
of Σ represents the information possessed by a relevant party in a discourse. We assume that
for all ⟨w,Σ⟩, we have that w ∈ ⋂Σ, so that all discourse participants consider the actual world
possible. For an atomic formula p, we have that w,Σ ⊩ p iff p is true at w (according to some
fixed valuation function mapping atomic propositions to sets of worlds). Compound formulas
are evaluated as follows:

w,Σ ⊩ ¬φ iff ∀s ∈ Σ ∶ w,{s} ⊮ φ; w,Σ ⊩ φ→ ψ iff ∀s ∈ Σ ∶ w,{s} ⊮ φ or w,{s} ⊩ ψ;
w,Σ ⊩ φ∧ψ iff ∀s ∈ Σ ∶ w,{s} ⊩ φ & w,{s} ⊩ ψ; w,Σ ⊩◇φ iff ∀s ∈ Σ ∃w′ ∈ s: w′,{s} ⊩ φ;
w,Σ ⊩ φ∨ψ iff ∀s ∈ Σ ∶ w,{s} ⊩ φ or w,{s} ⊩ ψ; w,Σ ⊩ ◻φ iff ∀s ∈ Σ ∀w′ ∈ s: w′,{s} ⊩ φ.

It is easy to see that the usual inter-definability between the Boolean connectives and the duality
between ◇ and ◻ are satisfied. Note that a might-claim (◇φ) is satisfied when every discourse
participant deems the prejacent possible, and that the negation of amight-claim is satisfied when
every discourse participant deems its prejacent impossible. The analogue of Yalcin’s notion of
acceptance is defined as follows: Σ accepts φ, denoted Σ ⊧ φ, iff w,Σ ⊩ φ for all w ∈ ⋃Σ. Now,
there is an epistemic disagreement in a hyperdomain Σ when Σ ⊭◇φ and Σ ⊭ ¬◇φ. We thus
capture the epistemic disagreement in (1) since the prejacent is compatible with John’s private
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information sj but not with Mary’s sm, and so the the hyper-dommain {sj , sm} accepts neither
the might-claim nor its negation. We also correctly predict the epistemic pseudo-agreement in
(2): since both John’s and Mary’s private information states contain a world where Bob is at
the party, the might-claim is accepted. Finally, semantic consequence, denoted ⊧hd, is defined
as preservation of acceptance at all hyper-domains: Γ ⊧hd φ iff for all W , V ∶ At → ℘(W ) and
Σ ⊆ ℘(W ), if Σ ⊧ γ for all γ ∈ Γ, then Σ ⊧ φ. Hence, we have that ¬p ∧ ◇p ⊧hd � as every
hyper-domain that accepts ¬p will fail to accept ◇p (similarly for the other variants of epistemic
contradictions). In addition, as with domain semantics, our hyper-domain semantics collapses
strings of modals to the innermost modality: for instance, we have that ◇◻◇p ⊧hd ◇p.

4 Logic of Epistemic Disagreement (LED)
To investigate the logic of our hyper-domain semantics, we take inspiration from Schulz’s [9]
translation of the consequence relation of domain semantics into the modal logic S5. The target
logical system for our translation of the semantic consequence for hyper-domain semantics is a
bimodal logic interpreted in models based on partial states, also called possibilities or situations,
where the truth value of a formula may be unsettled [5, 10, 4]. The two modalities included
in our language are the usual epistemic modality ◻ representing “must” and a “consensus”
modality [C] indicating that the group collectively agrees on the prejacent. For simplicity, we
assume that [C] is always the outermost modality and does not iterate—i.e., it does not embed
under either [C] or ◻. More formally, the language LLED is defined recursively as follows:
φ ∶∶= ψ ∣ [C]ψ ∣ −φ ∣ φ ∧ φ ∣ φ ⩾ φ ∣ φ ⊃ φ, where ψ ∶∶= p ∣ −ψ ∣ ψ ∧ ψ ∣ ψ ⩾ ψ ∣ ψ ⊃ ψ ∣ ◻ψ for
p ∈ Atoms (the set of atomic propositions). We define ◇ψ as −◻−ψ and ⟨C⟩ψ as −[C]−ψ.

Formulas of LLED are interpreted in a possibility modelM = ⟨S,⊑,C, V ⟩ where S is a non-
empty set, ⊑ is a partial order on S (reflexive, transitive and anti-symmetric relation on S), C is
a binary relation on S, and V is a valuation that assigning to ever atomic formula a nonempty
subset U of S satisfying persistence and refinability [4]:

Persistence: if x ∈ U and y ⊑ x, then y ∈ U ;
Refinability: if x /∈ U , then ∃y ⊑ x ∀z ⊑ y ∶ z /∈ U .

Intuitively, y is a refinement of x (y ⊑ x) when y settles all the the formulas that x does and
possibly more. Persistence guarantees that every atomic proposition that is settled true/false in
x is also settled true/false in y. Refinability guarantees that if an atomic proposition not settled
true at x, then there is a refinement that settles it false. The intended interpretation of x C y
is that y is a relevant body of information that corresponds to some discourse participant’s
private information in the context represented by x. We impose the following constraint on ⊑
and C mirroring the constraint on hyper-domains requiring that every information state in the
hyper-domain contains the actual world: for all x, y ∈ S, if x C y, then x ⊑ y. That is, if x
represents the context of the conversation, then every participant’s information at x must be
able to be refinable into x.

Truth of a formula φ ∈ LLED at a state x in a modelM is defined as follows: For any atomic
formula p,M, x ⊩ p iff x ∈ V (p).
M, x ⊩ −φ iff x ⊮ φ M, x ⊩ φ ∧ ψ iffM, x ⊩ φ andM, x ⊩ ψ
M, x ⊩ φ ⩾ ψ iffM, x ⊩ φ orM, x ⊩ ψ M, x ⊩ φ ⊃ ψ iff eitherM, x ⊮ φ orM, x ⊩ ψ
M, x ⊩ ◻φ iff ∀y ⊑ x: M, y ⊩ φ M, x ⊩ [C]φ iff ∀y: if x C y thenM, y ⊩ φ

Note that, unlike in standard possibility semantics where persistence holds for all formulas, ◇-
formulas may fail to be persistent: a might-claim may hold at a situation but fail to hold at one
of its refinements. The definitions of validity on a frame ⟨S,⊑,C⟩ and a semantic consequence
⊧led are defined as usual.
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We provide a translation scheme for a portion of the language of hyper-domain semantics
in which (i) there are no iterated modalities (i.e., no formulas of the form ◻φ where φ contains
a modality) and (ii) there are no modalities in the scope of a disjunction or implication (e.g.,
no formula of the form ◇φ ∨ ψ or ◻φ ⊃ ψ). Suppose that φ is such a formula of hyper-
domain semantics, the formula τ(φ) ∈ LLED is defined in two steps: (1) transform φ into
a logically equivalent formula φ′ where all negations scope below any modal; and (2) define
τ ′(φ′) recursively: (i) τ ′(p) = p; (ii) τ ′(¬φ′) = ◻−τ ′(φ′); (iii) τ ′(φ′ ∧ ψ′) = τ ′(φ′) ∧ τ ′(ψ′); (iv)
τ ′(φ′ ∨ψ′) = ◻◇ (τ ′(φ′) ⩾ τ ′(ψ′)); (v) τ ′(φ′ → ψ′) = ◻(τ ′(φ′) ⊃ τ ′(ψ′)); (vi) τ ′(◻φ′) = ◻τ ′(φ′);
and (vii) τ ′(◇φ′) =◇τ ′(φ′). For example, τ(¬◻p) = τ ′(◇¬p) =◇◻−p. Our first main result is τ
preserves validity: for all formulas φ and sets of formulas Γ (in the restricted language), Γ ⊧hd φ
iff [C]τ(Γ) ⊧led [C]τ(φ), where [C]τ(Γ) means [C]τ(γ) for all γ ∈ Γ (see the Appendix).

The axiomatization of LED for language LLED includes the following: (i) all axiom schemas
from classical logic; (i) the S4 axioms for ◻; (iii) the axiom scheme corresponding to the
refinability ◻◇φ ⊃ φ; (iv) a limited version of persistence α ⊃ ◻α, where α is a positive formula;
(vi) the KD axioms for [C]; and (vii) φ ⊃ [C]◇φ. The last axiom, called entertainability, says
that if φ is true, then everyone should agree that φ is at least possible. This axiom corresponds
to the aforementioned condition on C stating that if x C y, then x ⊑ y. Importantly, the T
axiom is not satisfied for [C], in particular, sentences of the form [C]◇p ⊃◇p may not be true
at a partial state. This is what happens in pseudo-agreement situations, such as (2), in which
it is possible for everybody at a situation x to agree that ◇p while p is actually false at x, and
so is ◇p is false at x. The logic is closed under Modus Ponens and necessitation for both ◻ and
[C]. Some details of the proof of completeness can be found in the Appendix.

We conclude this section by discussing the consequences of imposing additional constraints
concerning the interaction of C and ⊑. A full discussion of these constraints is left for the
full paper. Given the restriction on the language that [C] cannot be embed under ◻, the
formulas corresponding to the constraints discussed below cannot be stated in the language
LLED, but they do help to refine the notion of context we employ. We start with the following
two constraints from [4]:

R-rule: if x′ ⊑ x, x′ C y′, and y′ ≬ z, then ∃y ∶ xCy and y ≬ z.
R⇒win: if x C y, then ∀y′ ⊑ y∃x′ ⊑ x∀x′′ ⊑ x′∃y′′ ∶ x′′ C y′′ and y′′ ≬ y′.

For any two possibilities x and y, x ≬ y means that x and y have a common refinement. The
above two conditions guarantee that sets of partial states associated with [C]-formulas satisfy
persistence and refinability. Persistence of [C]-formulas means that if every participant at a
context x agrees on some formula φ (e.g.,◇p), then at all refinements of x, everybody should still
agree on φ. This requires that the group of relevant discourse participants remain fixed across
refinements. It also means that a refinement of a context is not accompanied by the discourse
participants’ gaining new information. Otherwise, there could be some discourse participant’s
information that is compatible with p, but no longer compatible after the discourse participant
acquires new information (e.g., that p is false). Thus, our notion of context refinement is
different from the standard notion of context update. Our proposal is to view a refinement of
a context as an update with new relevant issues or questions under discussion [8, 7]. That is,
if y is a refinement of x, then y may settle additional issues that are deemed irrelevant at x.
For example, suppose that Alice, Bob, and Carla are at the party. If x represents a context
in which the question under discussion only concerns the whereabouts of Alice and Bob, then
a refinement of x may represent a context where the question under discussion concerns the
whereabouts of all three individuals.

Finally, we consider three additional constraints from [10]. The first two constraints that
one might impose are:
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C(ontinuous): If x′ ⊑ x and x′ C y′, then ∃y ∶ x C y and y′ ⊑ y.
O(pen): If x C y and y′ ⊑ y, then ∃x′ ⊑ x ∶ x′ C y′.

While it is clear that C should be satisfied given our intended interpretation of C and our
understanding of context discussed above, imposing bothO and ourE(ntertainability) condition
(if y C x, then x ⊑ y) leads to a counterintuitive constraint on our models. Given O and E, it
follows that if x ⊑ y and y′ ⊑ y, then ∃x′ ∶ x′ ⊑ x and x′ ⊑ y′. That is, every two refinements of a
single situation have a common refinement. This means that we cannot impose both persistence
and refinability. For this reason, we are tempted to drop the constraint O. However, for now we
just highlight the tension between O and E and leave additional investigation to future work.

The third constraint that might be imposed is:

Conv(ergence): If x′ ⊑ x and x C y, then ∃y′ ⊑ y ∶ x′ C y′.

Conv guarantees the persistence of formulas of the form ⟨C⟩φ (provided that φ is persistent).
This squares with the current interpretation of context refinement: if someone endorses that φ
at x then the same person should still endorse φ at a refinement of x′ of x. In our ongoing work,
we will explore other interactions between C and ⊑ and lift the syntactic restriction currently
imposed on LLED leading to a translation of the full language of hyper-domain semantics.

5 Adding Knowledge Operator
In this section, we define a knowledge operator in hyper-domain semantics. Rather than repre-
senting an agent’s knowledge as a set of worlds, we use a hyper-domain. Consider (3) again: in
order to make “I don’t know that John might have cancer” and “I don’t know that it’s not the
case that John might have cancer” both true (i.e., w,Σ ⊩ ¬Ki ◇ p and w,Σ ⊩ ¬Ki¬ ◇ p), we
assume that the speaker’s knowledge Kw

i contains two information states s1 and s2 where s1 is
compatible with John’s having cancer whereas s2 is not. In this case, the speaker internalizes
two different epistemic perspectives and her knowledge state is indeterminate between them
(cf. [13]). The knowledge operator Ki is defined as follows:

• w,Σ ⊩ Kiφ iff ∀w′ ∈ ⋃Kw
i ∶ w′,Σ ∪Kw

i ⊩ φ, where Kw
i is the hyper-domain that corre-

sponds to what i knows at w.

Note that Ki shifts the hyper-domain for evaluating its prejacent to the combined state Σ∪Kw
i

rather than agent i’s knowledge state. This ensures that the truth axiom Kiφ ⊃ φ is accepted
at any hyper-domain. In particular, we have that Ki ◇ p ⊃ ◇p is accepted at any hyper-
domain. This is not true in standard domain semantics since p may be compatible with what
the knowledge ascribee knows, but incompatible with what the interlocutor knows (see [1] for
discussion of a related problem).

Now, we can unpack w,Σ ⊩ ¬Ki ◇ p and w,Σ ⊩ ¬Ki¬◇ p into the following conditions:

• w,Σ ⊩ ¬Ki ◇ p iff ∀s ∈ Σ.∃s′ ∈ {s} ∪Kw
i .∀w′ ∈ s′ ∶ w′,{s′} ⊮ p

• w,Σ ⊩ ¬Ki¬◇ p iff ∀s ∈ Σ.∃s′ ∈ {s} ∪Kw
i .∃w′ ∈ s′ ∶ w′,{s′} ⊩ p

Since Kw
i contains two information states s1 and s2 each of which witnesses one of the two

conditions, we correctly predict w,Σ ⊩ ¬Ki ◇ p and w,Σ ⊩ ¬Ki¬◇ p to be jointly satisfiable.

6 Conclusion
In this abstract, we presented a hyper-domain semantics that offers a straightforward account of
the group reading of epistemic modals. Combining the idea of representing the group informa-
tion directly using a set of information states with a Yalcin-style domain semantics, we are also
able to define a knowledge operator that resolves certain problems associated with the standard
domain semantics. We then show that our hyper-domain semantics can be axiomatized via the
translation into a new bimodal possibility semantics.
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A Formal Results
Theorem A.1. The translation scheme τ preserves validity in the following way: Γ ⊧hd φ iff
[C]τ(Γ) ⊧led [C]τ(φ) where [C]τ(Γ) abbreviates [C]τ(γ) for all γ ∈ Γ.

Proof. We prove this by first proving Proposition A.3: given a pointed hyper-domain model
⟨W,V ⟩,Σ and its corresponding pointed possibility model M, x, the following holds: Σ ⊧ φ
iff M = ⟨S,C,⊑, V ′⟩, x ⊩ [C]τ(φ). The correspondence is defined as follows: given a pair
⟨W,V ⟩,Σ, we can generate a pairM, x by making (i) x = ⋂Σ; (ii) S = ℘(W ) − {∅}; (iii) y′ ⊑ y
iff y′ ⊆ y; (iv) xCy iff y ∈ Σ; (v) V ′(p) = {s ∈ S ∣ s ⊆ V (p)}. We can check that the resulting
model is indeed of the right kind; for instance, for all x, y ∈ S, we have that if x C y, then
x ⊑ y since ⋂Σ ⊆ y for any y ∈ Σ. Borrowing a term from [10], let us call the resulting M, x
the posibilization of ⟨W,V ⟩,Σ. As for the opposite direction going from M, x to ⟨W,V ⟩,Σ, it
suffices to show thatM, x is isomorphic to the possibilization of ⟨W,V ⟩,Σ. Given Proposition
A.3, Theorem A.1 immediately follows. Now to prove Proposition A.3, we will first prove
Proposition A.2, the special case where Σ is a singleton hyper-domain.

Proposition A.2. Suppose that W ≠ ∅, V ∶ Atoms → ℘(W ) and s ⊆W . Let M = ⟨S,C,⊑, V ⟩
be a model where (i) x = ⋂{s} = s; (ii) S = ℘(W ) ∖ {∅}; (iii) y′ ⊑ y iff y′ ⊆ y; (iv) xCy iff
y ∈ {s}; (v) V ′(p) = {s ∈ S ∣ s ⊆ V (p)}. Then, {s} ⊧ φ iffM, x ⊩ τ(φ), where x = s.

Proof. First, since x = s, (iv) implies that x C x. Let φ′ be a formula equivalent to φ but with
negations all scoping below modals, and all strings of modals collapsed. Then we can show
{s} ⊧ φ iffM, x ⊩ τ ′(φ′) by an induction on the structure of φ′ by using induction hypotheses:
for all x′ ∈ ℘(W ) ∖ {∅},{x′} ⊧ α iffM, x′ ⊩ τ ′(α). Consider the left to right direction first.

1. Let φ′ be of the form p: then τ ′(p) = p. Since {s} ⊧ φ′, we have ∀w ∈ ⋃{s} ∶ w,{s} ⊩ p,
which means ∀w ∈ s ∶ w ∈ V (p). Hence, s ⊆ V (p) which meansM, x ⊩ p.

2. Let φ′ be of the form ¬α: then τ ′(¬α) = ◻ − τ ′(α). Since {s} ⊧ ¬α, it follows that
∀w ∈ s ∶ w,{s} ⊩ ¬α and thus ∀w ∈ s ∶ w,{s} ⊮ α. Now, assume M, x ⊮ ◻ − τ ′(α) for
contradiction. Then, ∃x′ ⊑ x ∶ M, x′ ⊩ τ ′(α). Given that x′ ⊑ x iff x′ ⊆ x and x = s,
this just amounts to ∃x′ ⊆ s ∶ M, x′ ⊩ τ ′(α). By the induction hypothesis, we derive
∃x′ ⊆ s ∶ {x′} ⊧ α. Then, ∃x′ ⊆ s∀w′ ∈ x′ ∶ w′,{x′} ⊩ α. Now recall that φ′ is a formula
where all negations scope below modals, this means that α does not contain any modal
operators. Given this, ∃x′ ⊆ s∀w′ ∈ x′ ∶ w′,{x′} ⊩ α contradicts ∀w ∈ s ∶ w,{s} ⊮ α since
the truth of Boolean formulas do not depend on the hyper-domain.

3. Let φ′ be of the form α ∧ β: then τ ′(α ∧ β) = (τ ′(α) ∧ τ ′(β)). Given {s} ⊧ α ∧ β,
M, x ⊩ (τ ′(α) ∧ τ ′(β)) follows straightforwardly from the induction hypothesis.

4. Let φ′ be of the form α ∨ β: then τ ′(α ∨ β) = ◻ ◇ (τ ′(α) ⩾ τ ′(β)). Given {s} ⊧ α ∨ β,
it follows that ∀w ∈ s ∶ w,{s} ⊩ α ∨ β, which means ∀w ∈ s ∶ w,{s} ⊩ α or w,{s} ⊩ β.
We also have ∀w ∈ s ∶ if w,{s} ⊮ α then w,{s} ⊩ β, which entails if ∀w ∈ s ∶ w,{s} ⊮ α
then ∀w ∈ s ∶ w,{s} ⊩ β, which amounts to if {s} ⊧ ¬α then {s} ⊧ β. From {s} ⊧ β by
induction hypothesis, we haveM, s ⊧ τ ′(β); from {s} ⊧ α, since ¬α does not contain any
modal operators, by what we have just shown in step (2) above, we haveM, s ⊩ ◻−τ ′(α).
Hence, we can rewrite the conditional as: if M, s ⊩ ◻ − τ ′(α) then M, s ⊧ τ ′(β). First
assume M, s ⊩ ◻ − τ ′(α), then we immediately derive M, s ⊩ τ ′(β). Since β does not
contain any modals, by persistence, ∀s′ ⊑ s ∶M, s′ ⊩ τ ′(β). It then follows that M, s ⊩
◻◇ (τ ′(α) ⩾ τ ′(β)). Now assumeM, s ⊮ ◻− τ ′(α) instead. Then, ∃s′ ⊑ s ∶M, s′ ⊩ τ ′(α),
which means ∃s′ ⊑ s ∶ M, s′ ⊩ τ ′(α) ⩾ τ ′(β). Since α does not contain modals, by
persistence, we haveM, s ⊩ ◻◇ (τ ′(α) ⩾ τ ′(β)) again.
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5. The proof for → is analogous to the proof for ∨.

6. Let φ′ be of the form ◇α: then τ ′(◇α) = ◇τ ′(α). Since {s} ⊧ ◇α, it follows that
∀w ∈ s ∶ w,{s} ⊩ ◇α which just means ∃w ∈ s ∶ w,{s} ⊩ α. Assume M, x ⊮ ◇τ ′(α)
for contradiction, from which it follows that ∀x′ ⊆ x ∶M, x′ ⊮ τ ′(α). By the induction
hypothesis, we derive ∀x′ ⊆ x ∶ {x′} ⊭ α. Then, ∀x′ ⊆ x∃w′ ∈ x′ ∶ w′,{x′} ⊮ α. Since x = s,
this contradicts ∃w ∈ s ∶ w,{s} ⊩ α. To see this, consider the singleton states {w′} ⊆ x.

7. Let φ′ be of the form ◻α: then τ ′(◻α) = ◻τ ′(α). Since {s} ⊧ ◻α, it follows that ∀w ∈
s ∶ w,{s} ⊩ α. AssumeM, x ⊮ ◻τ ′(α) for contradiction; it follows that ∃x′ ⊆ x ∶M, x′ ⊮
τ ′(α). By the induction hypothesis, we derive ∃x′ ⊆ x ∶ {x′} ⊭ α. Unpacking gives us
∃x′ ⊆ x∃w′ ∈ x′ ∶ w′,{x′} ⊮ α, which ∀w ∈ s ∶ w,{s} ⊩ α given that α is Boolean and the
truth of Boolean formulas does not depend on the hyper-domain.

The right to left direction is analogous.

Proposition A.3. Suppose that W ≠ ∅, V ∶ Atoms → ℘(W ) and s ⊆W . Let M = ⟨S,C,⊑, V ⟩
be the possibilization of ⟨W,V ⟩,Σ. Then, Σ ⊧ φ iffM, x ⊩ [C]τ(φ).

Proof. We will illustrate with the left to right direction: if Σ ⊧ φ′ thenM, x ⊩ [C]τ ′(φ′).

1. Let φ′ be atomic; we want to showM, x ⊩ [C]p. Since Σ ⊧ p, we have ∀w ∈ ⋃Σ ∶ w,Σ ⊩ p,
which means ∀w ∈ ⋃Σ ∶ w ∈ V (p). AssumeM, x ⊮ [C]p for contradiction. It follows that
∃y ∶ xCy &M, y ⊮ p, which means y /⊆ V (p). Since y ∈ Σ, this contradicts ∀w ∈ ⋃Σ ∶ w ∈
V (p). Hence,M, x ⊩ [C]p.

2. Let φ′ be of the form ¬α; we want to show M, x ⊩ [C] ◻ −τ ′(α). Since Σ ⊧ ¬α, we
have ∀w ∈ ⋃Σ ∶ w,Σ ⊩ ¬α, which means ∀w ∈ ⋃Σ∀s ∈ Σ ∶ w,{s} ⊮ α. By the definition
of acceptance again, it follows that ∀s ∈ Σ ∶ {s} ⊧ ¬α. Given Proposition A.2, we have
∀s ∈ Σ ∶M′, s ⊩ [C]◻−τ ′(α), whereM′, s is the possibilization of ⟨W,V ⟩,{s}. Now since
{s} only contains one state, it means if s C y then y = s, and givenM′, s ⊩ [C]◻−τ ′(α),
it follows that M′, s ⊩ ◻ − τ ′(α). Since M′ and M are both generated from ⟨W,V ⟩,
they can only differ possibly with respect to C. But since α does not contain any [C],
∀s ∈ Σ ∶M, s ⊩ ◻ − τ ′(α). This impliesM, x ⊩ [C] ◻ −τ ′(α).

3. Proofs for all the other operators can be given along the same lines, for example:

Let φ′ be of the form ◇α; we want to showM, x ⊩ [C]◇ τ ′(α). Since Σ ⊧ ◇α, we have
∀w ∈ ⋃Σ.∀s ∈ Σ.∃w′ ∈ s ∶ w′,{s} ⊩ α, from which it follows that ∀s ∈ Σ ∶ {s} ⊧◇α. Given
Proposition A.2, we have ∀s ∶M′, s ⊩ [C]◇ τ ′(α). Since s only C-relates to itself inM′,
we have ∀s ∶M′, s ⊩ ◇τ ′(α). Because M′ and M are again generated from the same
⟨W,V ⟩, it follows that ∀s ∈ Σ ∶M, s ⊩◇τ ′(α). Hence,M, x ⊩ [C]◇ τ ′(α).

The right to left direction can be established analogously.

Definition A.4. The canonical model for LED is defined as MΛ = {SΛ,⊑Λ,CΛ, V Λ}, where
(i) SΛ is the set of all consistent and deductively closed sets of formulas of LED; (ii) Γ′ ⊑Λ Γ
iff {φ ∣ ◻φ ∈ Γ} ⊆ Γ′, that is, for all formulas φ, ◻φ ∈ Γ implies φ ∈ Γ′; (iii) Γ′ ∈ CΛ(Γ) iff
{φ ∣ [c]φ ∈ Γ} ⊆ Γ′; (iv) for any atomic formula p, V Λ(p) = {Γ ∈ SΛ ∣ p ∈ Γ}.

Theorem A.5 (Soundness and Strong Completeness). Γ ⊢led φ if and only if Γ ⊧led φ.
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