The Complete Proof of the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

The Complete Proof of the Riemann Hypothesis

Frank Vega

Abstract

Robin criterion states that the Riemann Hypothesis is true if and only if the inequality $\sigma(n)<e^{\gamma} \times n \times \log \log n$ holds for all $n>5040$, where $\sigma(n)$ is the sum-ofdivisors function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. We prove that the Robin inequality is true for all $n>5040$ which are not divisible by any prime number between 2 and 953 . Using this result, we show there is a contradiction just assuming the possible smallest counterexample $n>5040$ of the Robin inequality. In this way, we prove that the Robin inequality is true for all $n>5040$ and thus, the Riemann Hypothesis is true.

Keywords Riemann hypothesis • Robin inequality • sum-of-divisors function • prime numbers

Mathematics Subject Classification (2010) MSC 11M26 • MSC 11A41 • MSC 11 A 25

1 Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [7]. As usual $\sigma(n)$ is the sum-of-divisors function of n [3]:

$$
\sum_{d \mid n} d
$$

where $d \mid n$ means the integer d divides to n and $d \nmid n$ means the integer d does not divide to n. Define $f(n)$ to be $\frac{\sigma(n)}{n}$. Say Robins (n) holds provided

$$
f(n)<e^{\gamma} \times \log \log n
$$

F. Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
ORCiD: 0000-0001-8210-4126
E-mail: vega.frank@gmail.com

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, and \log is the natural logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all $n>5040$ if and only if the Riemann Hypothesis is true [7].

It is known that Robins(n) holds for many classes of numbers n.
Theorem 1.2 Robins(n) holds for all $n>5040$ that are not divisible by 2 [3].
On the one hand, we prove that $\operatorname{Robins}(n)$ holds for all $n>5040$ that are not divisible by any prime number between 3 and 953 . Let $q_{1}=2, q_{2}=3, \ldots, q_{m}$ denote the first m consecutive primes, then an integer of the form $\prod_{i=1}^{m} q_{i}^{a_{i}}$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m} \geq 0$ is called an Hardy-Ramanujan integer [3]. A natural number n is called superabundant precisely when, for all $m<n$

$$
f(m)<f(n) .
$$

Theorem 1.3 If n is superabundant, then n is an Hardy-Ramanujan integer [2].
Theorem 1.4 The smallest counterexample of the Robin inequality greater than 5040 must be a superabundant number [1].

On the other hand, we prove the nonexistence of such counterexample and therefore, the Riemann Hypothesis is true.

2 A Central Lemma

These are known results:
Lemma 2.1 [3]. For $n>1$:

$$
\begin{equation*}
f(n)<\prod_{q \mid n} \frac{q}{q-1} . \tag{2.1}
\end{equation*}
$$

Lemma 2.2 [4].

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{1}{1-\frac{1}{q_{k}^{2}}}=\zeta(2)=\frac{\pi^{2}}{6} \tag{2.2}
\end{equation*}
$$

The following is a key lemma. It gives an upper bound on $f(n)$ that holds for all n. The bound is too weak to prove Robins(n) directly, but is critical because it holds for all n. Further the bound only uses the primes that divide n and not how many times they divide n.

Lemma 2.3 Let $n>1$ and let all its prime divisors be $q_{1}<\cdots<q_{m}$. Then,

$$
f(n)<\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} .
$$

Proof We use that lemma 2.1:

$$
f(n)<\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} .
$$

Now for $q>1$,

$$
\frac{1}{1-\frac{1}{q^{2}}}=\frac{q^{2}}{q^{2}-1} .
$$

So

$$
\begin{aligned}
\frac{1}{1-\frac{1}{q^{2}}} \times \frac{q+1}{q} & =\frac{q^{2}}{q^{2}-1} \times \frac{q+1}{q} \\
& =\frac{q}{q-1}
\end{aligned}
$$

Then by lemma 2.2,

$$
\prod_{i=1}^{m} \frac{1}{1-\frac{1}{q_{i}^{2}}}<\zeta(2)=\frac{\pi^{2}}{6}
$$

Putting this together yields the proof:

$$
\begin{aligned}
f(n) & <\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \\
& \leq \prod_{i=1}^{m} \frac{1}{1-\frac{1}{q_{i}^{2}}} \times \frac{q_{i}+1}{q_{i}} \\
& <\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} .
\end{aligned}
$$

3 About the p-adic order

In basic number theory, for a given prime number p, the p-adic order of a natural number n is the highest exponent $v_{p} \geq 1$ such that $p^{v_{p}}$ divides n. This is a known result:

Lemma 3.1 In general, we know that Robins(n) holds for a natural number $n>5040$ that satisfies either $v_{2}(n) \leq 19, v_{3}(n) \leq 12$ or $v_{7}(n) \leq 6$, where $v_{p}(n)$ is the p-adic order of n [5].

We know the following lemmas:
Lemma 3.2 [5]. Let $\prod_{i=1}^{m} q_{i}^{a_{i}}$ be the representation of n as a product of primes $q_{1}<$ $\cdots<q_{m}$ with natural numbers as exponents a_{1}, \ldots, a_{m}. Then,

$$
f(n)=\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right) \times \prod_{i=1}^{m}\left(1-\frac{1}{q_{i}^{a_{i}+1}}\right) .
$$

Lemma 3.3 [5]. Let $n>e^{e^{23.762143}}$ and let all its prime divisors be $q_{1}<\cdots<q_{m}$, then

$$
\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right)<\frac{1771561}{1771560} \times e^{\gamma} \times \log \log n
$$

Lemma 3.4 Robins(n) holds for all $10^{10^{10}} \geq n>5040$ [5].
Putting together all these results, then we obtain that
Lemma 3.5 Robins(n) holds for $n>5040$ when $v_{31}(n) \leq 3$.
Proof From lemma 3.2, we note that

$$
f(n)=\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right) \times \prod_{i=1}^{m}\left(1-\frac{1}{q_{i}^{a_{i}+1}}\right) \leq\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right) \times\left(1-\frac{1}{31^{v_{31}(n)+1}}\right)
$$

when $\nu_{31}(n) \leq 3$. We only need to look at the case where $\nu_{31}(n)=3$ since the weaker cases follow because

$$
\left(1-\frac{1}{31^{1+1}}\right)<\left(1-\frac{1}{31^{2+1}}\right)<\left(1-\frac{1}{31^{3+1}}\right) .
$$

In this way, we obtain that

$$
f(n) \leq\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right) \times\left(1-\frac{1}{31^{3+1}}\right)=\frac{923520}{923521} \times\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right)
$$

when $v_{31}(n) \leq 3$. With lemma 3.3, we have for $n>e^{e^{23.762143}}$

$$
\frac{923520}{923521} \times\left(\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}\right)<\frac{923520}{923521} \times \frac{1771561}{1771560} \times e^{\gamma} \times \log \log n<e^{\gamma} \times \log \log n
$$

since $\frac{923520}{923521} \times \frac{1771561}{1771560}<1$. In light of lemma 3.4 and the fact that $e^{e^{23.762143}}<10^{10^{10}}$, we then conclude that Robins (n) holds for $n>5040$ when $v_{31}(n) \leq 3$.

4 A Particular Case

We can easily prove that $\operatorname{Robins}(n)$ is true for certain kind of numbers:
Lemma 4.1 Robins(n) holds for $n>5040$ when $q \leq 7$, where q is the largest prime divisor of n.

Proof Let $n>5040$ and let all its prime divisors be $q_{1}<\cdots<q_{m} \leq 5$, then we need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq e^{\gamma} \times \log \log n
$$

according to the lemma 2.1. For $q_{1}<\cdots<q_{m} \leq 5$,

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5}{1 \times 2 \times 4}=3.75<e^{\gamma} \times \log \log (5040) \approx 3.81
$$

However, we know for $n>5040$

$$
e^{\gamma} \times \log \log (5040)<e^{\gamma} \times \log \log n
$$

and therefore, the proof is complete when $q_{1}<\cdots<q_{m} \leq 5$. The remaining case is for $n>5040$ when all its prime divisors are $q_{1}<\cdots<q_{m} \leq 7$. Robins (n) holds for $n>5040$ when $v_{7}(n) \leq 6$ according to the lemma 3.1 [5]. Hence, it is enough to prove this for those natural numbers $n>5040$ when $7^{7} \mid n$. For $q_{1}<\cdots<q_{m} \leq 7$,

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1} \leq \frac{2 \times 3 \times 5 \times 7}{1 \times 2 \times 4 \times 6}=4.375<e^{\gamma} \times \log \log \left(7^{7}\right) \approx 4.65
$$

However, for $n>5040$ and $7^{7} \mid n$, we know that

$$
e^{\gamma} \times \log \log \left(7^{7}\right) \leq e^{\gamma} \times \log \log n
$$

and as a consequence, the proof is complete when $q_{1}<\cdots<q_{m} \leq 7$.

5 A Better Bound

This is a known result:
Lemma 5.1 [8]. For $x>1$:

$$
\begin{equation*}
\sum_{q \leq x} \frac{1}{q}<\log \log x+B+\frac{1}{\log ^{2} x} \tag{5.1}
\end{equation*}
$$

where

$$
B=0.2614972128 \cdots
$$

denotes the (Meissel-)Mertens constant [8].
We show a better result:
Lemma 5.2 For $x \geq 11$, we have

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-0.12
$$

Proof Let's define $H=\gamma-B$. The lemma 5.1 is the same as

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-\left(H-\frac{1}{\log ^{2} x}\right) .
$$

For $x \geq 11$,

$$
\left(H-\frac{1}{\log ^{2} x}\right)>\left(0.31-\frac{1}{\log ^{2} 11}\right)>0.12
$$

and thus,

$$
\sum_{q \leq x} \frac{1}{q}<\log \log x+\gamma-\left(H-\frac{1}{\log ^{2} x}\right)<\log \log x+\gamma-0.12
$$

6 On a Square Free Number

We know the following results:
Lemma 6.1 [3]. For $0<a<b$:

$$
\begin{equation*}
\frac{\log b-\log a}{b-a}=\frac{1}{(b-a)} \int_{a}^{b} \frac{d t}{t}>\frac{1}{b} \tag{6.1}
\end{equation*}
$$

Lemma 6.2 [3]. For $q>0$:

$$
\begin{equation*}
\log (q+1)-\log q=\int_{q}^{q+1} \frac{d t}{t}<\frac{1}{q} \tag{6.2}
\end{equation*}
$$

We recall that an integer n is said to be square free if for every prime divisor q of n we have $q^{2} \nmid n$ [3]. Robins (n) holds for all $n>5040$ that are square free [3].

Lemma 6.3 For a square free number

$$
n=q_{1} \times \cdots \times q_{m}
$$

such that $q_{1}<q_{2}<\cdots<q_{m}$ are odd prime numbers, $q_{m} \geq 11$ and $3 \nmid n$, then:

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \sigma(n) \leq e^{\gamma} \times n \times \log \log \left(2^{19} \times n\right)
$$

Proof By induction with respect to $\omega(n)$, that is the number of distinct prime factors of n [3]. Put $\omega(n)=m$ [3]. We need to prove the assertion for those integers with $m=1$. From a square free number n, we obtain

$$
\begin{equation*}
\sigma(n)=\left(q_{1}+1\right) \times\left(q_{2}+1\right) \times \cdots \times\left(q_{m}+1\right) \tag{6.3}
\end{equation*}
$$

when $n=q_{1} \times q_{2} \times \cdots \times q_{m}$ [3]. In this way, for every prime number $q_{i} \geq 11$, then we need to prove

$$
\begin{equation*}
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(1+\frac{1}{q_{i}}\right) \leq e^{\gamma} \times \log \log \left(2^{19} \times q_{i}\right) . \tag{6.4}
\end{equation*}
$$

For $q_{i}=11$, we have

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(1+\frac{1}{11}\right) \leq e^{\gamma} \times \log \log \left(2^{19} \times 11\right)
$$

is actually true. For another prime number $q_{i}>11$, we have

$$
\left(1+\frac{1}{q_{i}}\right)<\left(1+\frac{1}{11}\right)
$$

and

$$
\log \log \left(2^{19} \times 11\right)<\log \log \left(2^{19} \times q_{i}\right)
$$

which clearly implies that the inequality (6.4) is true for every prime number $q_{i} \geq 11$. Now, suppose it is true for $m-1$, with $m \geq 2$ and let us consider the assertion for those
square free n with $\omega(n)=m[3]$. So let $n=q_{1} \times \cdots \times q_{m}$ be a square free number and assume that $q_{1}<\cdots<q_{m}$ for $q_{m} \geq 11$.

Case 1: $q_{m} \geq \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=\log \left(2^{19} \times n\right)$.
By the induction hypothesis we have

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(q_{1}+1\right) \times \cdots \times\left(q_{m-1}+1\right) \leq e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)
$$

and hence

$$
\begin{gathered}
\frac{\pi^{2}}{6} \times \frac{3}{2} \times\left(q_{1}+1\right) \times \cdots \times\left(q_{m-1}+1\right) \times\left(q_{m}+1\right) \leq \\
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)
\end{gathered}
$$

when we multiply the both sides of the inequality by $\left(q_{m}+1\right)$. We want to show

$$
e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right) \leq
$$

$e^{\gamma} \times q_{1} \times \cdots \times q_{m-1} \times q_{m} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=e^{\gamma} \times n \times \log \log \left(2^{19} \times n\right)$.
Indeed the previous inequality is equivalent with
$q_{m} \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right) \geq\left(q_{m}+1\right) \times \log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)$
or alternatively

$$
\begin{gathered}
\frac{q_{m} \times\left(\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)\right)}{\log q_{m}} \geq \\
\frac{\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)}{\log q_{m}}
\end{gathered}
$$

We can apply the inequality in lemma 6.1 just using $b=\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times\right.$ $\left.q_{m}\right)$ and $a=\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)$. Certainly, we have

$$
\begin{gathered}
\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)= \\
\log \frac{2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}}{2^{19} \times q_{1} \times \cdots \times q_{m-1}}=\log q_{m} .
\end{gathered}
$$

In this way, we obtain

$$
\begin{gathered}
\frac{q_{m} \times\left(\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)-\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)\right)}{\log q_{m}}> \\
\frac{q_{m}}{\log \left(2^{19} \times q_{1} \times \cdots \times q_{m}\right)} .
\end{gathered}
$$

Using this result we infer that the original inequality is certainly satisfied if the next inequality is satisfied

$$
\frac{q_{m}}{\log \left(2^{19} \times q_{1} \times \cdots \times q_{m}\right)} \geq \frac{\log \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1}\right)}{\log q_{m}}
$$

which is trivially true for $q_{m} \geq \log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)$ [3].
Case 2: $q_{m}<\log \left(2^{19} \times q_{1} \times \cdots \times q_{m-1} \times q_{m}\right)=\log \left(2^{19} \times n\right)$.
We need to prove

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \frac{\sigma(n)}{n} \leq e^{\gamma} \times \log \log \left(2^{19} \times n\right) .
$$

We know $\frac{3}{2}<1.503<\frac{4}{2.66}$. Nevertheless, we could have

$$
\frac{3}{2} \times \frac{\sigma(n)}{n} \times \frac{\pi^{2}}{6}<\frac{4 \times \sigma(n)}{3 \times n} \times \frac{\pi^{2}}{2 \times 2.66}
$$

and therefore, we only need to prove

$$
\frac{\sigma(3 \times n)}{3 \times n} \times \frac{\pi^{2}}{5.32} \leq e^{\gamma} \times \log \log \left(2^{19} \times n\right)
$$

where this is possible because of $3 \nmid n$. If we apply the logarithm to the both sides of the inequality, then we obtain
$\log \left(\frac{\pi^{2}}{5.32}\right)+(\log (3+1)-\log 3)+\sum_{i=1}^{m}\left(\log \left(q_{i}+1\right)-\log q_{i}\right) \leq \gamma+\log \log \log \left(2^{19} \times n\right)$.
In addition, note that $\log \left(\frac{\pi^{2}}{5.32}\right)<\frac{1}{2}+0.12$. However, we know

$$
\gamma+\log \log q_{m}<\gamma+\log \log \log \left(2^{19} \times n\right)
$$

since $q_{m}<\log \left(2^{19} \times n\right)$. We use that lemma 6.2 for each term $\log (q+1)-\log q$ and thus,

$$
0.12+\frac{1}{2}+\frac{1}{3}+\frac{1}{q_{1}}+\cdots+\frac{1}{q_{m}} \leq 0.12+\sum_{q \leq q_{m}} \frac{1}{q} \leq \gamma+\log \log q_{m}
$$

where $q_{m} \geq 11$. Hence, it is enough to prove

$$
\sum_{q \leq q_{m}} \frac{1}{q} \leq \gamma+\log \log q_{m}-0.12
$$

but this is true according to the lemma 5.2 for $q_{m} \geq 11$. In this way, we finally show the lemma is indeed satisfied.

7 Robin on Divisibility

Robins (n) holds for every $n>5040$ that is not divisible by 2 [3]. We extend this property to other prime numbers:

Lemma 7.1 Robins(n) holds for all $n>5040$ when $3 \nmid n$. More precisely: every possible counterexample $n>5040$ of the Robin inequality must comply with $\left(2^{20} \times 3^{13}\right) \mid$ n.

Proof We will check the Robin inequality is true for every natural number $n=$ $q_{1}^{a_{1}} \times q_{2}^{a_{2}} \times \cdots \times q_{m}^{a_{m}}>5040$ such that $q_{1}, q_{2}, \cdots, q_{m}$ are distinct prime numbers, $a_{1}, a_{2}, \cdots, a_{m}$ are natural numbers and $3 \nmid n$. We know this is true when the greatest prime divisor of $n>5040$ is lesser than or equal to 7 according to the lemma 4.1. Therefore, the remaining case is when the greatest prime divisor of $n>5040$ is greater than or equal to 11 . We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

that is true when

$$
\frac{\pi^{2}}{6} \times \prod_{i=1}^{m} \frac{q_{i}+1}{q_{i}} \leq e^{\gamma} \times \log \log n
$$

according to the lemma 2.3. Using the formula (6.3) for the square free numbers, then we obtain that is equivalent to

$$
\frac{\pi^{2}}{6} \times \frac{\sigma\left(n^{\prime}\right)}{n^{\prime}} \leq e^{\gamma} \times \log \log n
$$

where $n^{\prime}=q_{1} \times \cdots \times q_{m}$ is the square free kernel of the natural number n [3]. The Robin inequality has been proved for all integers n not divisible by 2 (which are bigger than 10) [3]. Hence, we only need to prove the Robin inequality is true when $2 \mid n^{\prime}$. In addition, we know that Robins (n) holds for every $n>5040$ when $v_{2}(n) \leq 19$ according to the lemma 3.1 [5]. Consequently, we only need to prove that $\operatorname{Robins}(n)$ holds for $n>5040$ when $2^{20} \mid n$ and thus,

$$
e^{\gamma} \times n^{\prime} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times n^{\prime} \times \log \log n
$$

because of $2^{19} \times \frac{n^{\prime}}{2} \leq n$ where $2^{20} \mid n$ and $2 \mid n^{\prime}$. So,

$$
\frac{\pi^{2}}{6} \times \sigma\left(n^{\prime}\right) \leq e^{\gamma} \times n^{\prime} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

According to the formula (6.3) for the square free numbers and $2 \mid n^{\prime}$, then,

$$
\frac{\pi^{2}}{6} \times 3 \times \sigma\left(\frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times 2 \times \frac{n^{\prime}}{2} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

which is the same as

$$
\frac{\pi^{2}}{6} \times \frac{3}{2} \times \sigma\left(\frac{n^{\prime}}{2}\right) \leq e^{\gamma} \times \frac{n^{\prime}}{2} \times \log \log \left(2^{19} \times \frac{n^{\prime}}{2}\right)
$$

where this is true according to the lemma 6.3 when $3 \nmid \frac{n^{\prime}}{2}$. In addition, we know that Robins (n) holds for every $n>5040$ when $v_{3}(n) \leq 12$ according to the lemma 3.1 [5]. Hence, we only need to prove that Robins(n) holds for every $n>5040$ when $2^{20} \mid n$ and $3^{13} \mid n$. To sum up, the proof is complete.

Let's state the following known properties:

Lemma $7.2 \sigma(n)$ and $f(n)$ are multiplicatives [3]. Besides, for a prime number q and a positive integer $a \geq 0$, we have that $\sigma\left(q^{a}\right)=\frac{q^{a+1}-1}{q-1}$ [3]. We know that $f\left(q^{a}\right)<$ $\frac{q}{q-1}$ and $f\left(q^{a+1}\right)>f\left(q^{a}\right)$ for all primes q and all $a \geq 0$.

Lemma 7.3 Robins(n) holds for all $n>5040$ when $5 \nmid n$ or $7 \nmid n$.
Proof We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times m$, where $a \geq 20, b \geq 13,2 \nmid m, 3 \nmid m$ and $5 \nmid m$ or $7 \nmid m$. Therefore, we need to prove

$$
f\left(2^{a} \times 3^{b} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right) .
$$

We know

$$
f\left(2^{a} \times 3^{b} \times m\right)=f\left(3^{b}\right) \times f\left(2^{a} \times m\right)
$$

since f is multiplicative [3]. In addition, we know $f\left(3^{b}\right)<\frac{3}{2}$ for every natural number b [3]. In this way, we have

$$
f\left(3^{b}\right) \times f\left(2^{a} \times m\right)<\frac{3}{2} \times f\left(2^{a} \times m\right) .
$$

However, that would be equivalent to

$$
\frac{3}{2} \times f\left(2^{a} \times m\right)=\frac{9}{8} \times f(3) \times f\left(2^{a} \times m\right)=\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)
$$

where $f(3)=\frac{4}{3}$ since f is multiplicative [3]. Nevertheless, we have

$$
\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)<f(5) \times f\left(2^{a} \times 3 \times m\right)=f\left(2^{a} \times 3 \times 5 \times m\right)
$$

and

$$
\frac{9}{8} \times f\left(2^{a} \times 3 \times m\right)<f(7) \times f\left(2^{a} \times 3 \times m\right)=f\left(2^{a} \times 3 \times 7 \times m\right)
$$

where $5 \nmid m$ or $7 \nmid m, f(5)=\frac{6}{5}$ and $f(7)=\frac{8}{7}$. We know the Robin inequality is true for $2^{a} \times 3 \times 5 \times m$ and $2^{a} \times 3 \times 7 \times m$ when $a \geq 20$, since this is true for every natural number $n>5040$ when $v_{3}(n) \leq 12$ according to the lemma 3.1 [5]. Hence, we would have

$$
f\left(2^{a} \times 3 \times 5 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3 \times 5 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right)
$$

and

$$
f\left(2^{a} \times 3 \times 7 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3 \times 7 \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times m\right)
$$

when $b \geq 13$.
Lemma 7.4 Robins(n) holds for all $n>5040$ when a prime number $11 \leq q \leq 47$ complies with $q \nmid n$.

Proof We know that Robins (n) holds for every $n>5040$ when $v_{7}(n) \leq 6$ according to the lemma 3.1 [5]. We need to prove

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13} \times 7^{7}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times 7^{c} \times m$, where $a \geq 20, b \geq 13$, $c \geq 7,2 \nmid m, 3 \nmid m, 7 \nmid m, q \nmid m$ and $11 \leq q \leq 47$. Therefore, we need to prove

$$
f\left(2^{a} \times 3^{b} \times 7^{c} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7^{c} \times m\right) .
$$

We know

$$
f\left(2^{a} \times 3^{b} \times 7^{c} \times m\right)=f\left(7^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)
$$

since f is multiplicative [3]. In addition, we know $f\left(7^{c}\right)<\frac{7}{6}$ for every natural number c [3]. In this way, we have

$$
f\left(7^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)<\frac{7}{6} \times f\left(2^{a} \times 3^{b} \times m\right)
$$

However, that would be equivalent to

$$
\frac{7}{6} \times f\left(2^{a} \times 3^{b} \times m\right)=\frac{49}{48} \times f(7) \times f\left(2^{a} \times 3^{b} \times m\right)=\frac{49}{48} \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)
$$

where $f(7)=\frac{8}{7}$ since f is multiplicative [3]. In addition, we know

$$
\frac{49}{48} \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)<f(q) \times f\left(2^{a} \times 3^{b} \times 7 \times m\right)=f\left(2^{a} \times 3^{b} \times 7 \times q \times m\right)
$$

where $q \nmid m, f(q)=\frac{q+1}{q}$ and $11 \leq q \leq 47$. Nevertheless, we know the Robin inequality is true for $2^{a} \times 3^{b} \times 7 \times q \times m$ when $a \geq 20$ and $b \geq 13$, since this is true for every natural number $n>5040$ when $v_{7}(n) \leq 6$ according to the lemma 3.1 [5]. Hence, we would have

$$
\begin{aligned}
f\left(2^{a} \times 3^{b} \times 7 \times q \times m\right) & <e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7 \times q \times m\right) \\
& <e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 7^{c} \times m\right)
\end{aligned}
$$

when $c \geq 7$ and $11 \leq q \leq 47$.
Lemma 7.5 Robins(n) holds for all $n>5040$ when a prime number $53 \leq q \leq 953$ complies with $q \nmid n$.

Proof We know that Robins (n) holds for every $n>5040$ when $v_{31}(n) \leq 3$ according to the lemma 3.5. We need to prove that

$$
f(n)<e^{\gamma} \times \log \log n
$$

when $\left(2^{20} \times 3^{13} \times 31^{4}\right) \mid n$. Suppose that $n=2^{a} \times 3^{b} \times 31^{c} \times m$, where $a \geq 20, b \geq 13$, $c \geq 4,2 \nmid m, 3 \nmid m, 31 \nmid m, q \nmid m$ and $53 \leq q \leq 953$. Therefore, we need to prove that

$$
f\left(2^{a} \times 3^{b} \times 31^{c} \times m\right)<e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 31^{c} \times m\right)
$$

We know that

$$
f\left(2^{a} \times 3^{b} \times 31^{c} \times m\right)=f\left(31^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)
$$

since f is multiplicative [3]. In addition, we know that $f\left(31^{c}\right)<\frac{31}{30}$ for every natural number c [3]. In this way, we have that

$$
f\left(31^{c}\right) \times f\left(2^{a} \times 3^{b} \times m\right)<\frac{31}{30} \times f\left(2^{a} \times 3^{b} \times m\right) .
$$

However, that would be equivalent to
$\frac{31}{30} \times f\left(2^{a} \times 3^{b} \times m\right)=\frac{961}{960} \times f(31) \times f\left(2^{a} \times 3^{b} \times m\right)=\frac{961}{960} \times f\left(2^{a} \times 3^{b} \times 31 \times m\right)$
where $f(31)=\frac{32}{31}$ since f is multiplicative [3]. In addition, we know that
$\frac{961}{960} \times f\left(2^{a} \times 3^{b} \times 31 \times m\right)<f(q) \times f\left(2^{a} \times 3^{b} \times 31 \times m\right)=f\left(2^{a} \times 3^{b} \times 31 \times q \times m\right)$
where $q \nmid m, f(q)=\frac{q+1}{q}$ and $53 \leq q \leq 953$. Nevertheless, we know the Robin inequality is true for $2^{a} \times 3^{b} \times 31 \times q \times m$ when $a \geq 20$ and $b \geq 13$, since this is true for every natural number $n>5040$ when $v_{31}(n) \leq 3$ according to the lemma 3.5. Hence, we would have that

$$
\begin{aligned}
f\left(2^{a} \times 3^{b} \times 31 \times q \times m\right) & <e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 31 \times q \times m\right) \\
& <e^{\gamma} \times \log \log \left(2^{a} \times 3^{b} \times 31^{c} \times m\right)
\end{aligned}
$$

when $c \geq 4$ and $53 \leq q \leq 953$.

8 Helpful Lemmas

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{q \leq x} \log q
$$

where $q \leq x$ means all the prime numbers q that are less than or equal to x.
Lemma 8.1 [8]. For $x \geq 41$:

$$
\theta(x)>\left(1-\frac{1}{\log (x)}\right) \times x .
$$

Besides, we know that
Lemma 8.2 [8]. For $x \geq 286$:

$$
\prod_{q \leq x} \frac{q}{q-1}<e^{\gamma} \times\left(\log x+\frac{1}{2 \times \log (x)}\right) .
$$

For the counting prime function $\pi(x)$, we know that

Lemma 8.3 [8]. For $x \geq 17$:

$$
\frac{x}{\log x}<\pi(x)<1.25506 \times \frac{x}{\log x}
$$

The following lemma is crucial in our proof
Lemma 8.4 [6]. For $x>-1$:

$$
\frac{x}{x+1} \leq \log (1+x) \leq x
$$

The smallest counterexample of the Robin inequality greater than 5040 complies with
Lemma 8.5 If $n>5040$ is the smallest counterexample of the Robin inequality, then $q<\log n$ where q denotes the largest prime factor of $n[3]$.

We show some tools that could help us in the final proof.
Lemma 8.6 Let $q \geq 2$ be a prime and let $b \geq 0$ be a positive integer. If $q^{a} \| n$, then

$$
f\left(q^{b} \times n\right)=f(n) \times \frac{q^{a+b+1}-1}{q^{a+b+1}-q^{b}}
$$

where $q^{a} \| n$ signifies that q^{a} divides n, but q^{a+1} does not divide n.
Proof We assume that $q^{a} \| n$. Since $\sigma(n)$ and $f(n)$ are multiplicatives according to the lemma 7.2, then we would only need to study $f\left(q^{a+b}\right)$ where we know from lemma 7.2 that $\sigma\left(q^{a}\right)=\frac{q^{a+1}-1}{q-1}$. Then,

$$
\begin{aligned}
f\left(q^{a+b}\right) & =\frac{q^{a+b+1}-1}{q^{a+b} \times(q-1)} \times \frac{q^{a+1}-1}{q^{a} \times(q-1)} \times \frac{q^{a} \times(q-1)}{q^{a+1}-1} \\
& =f\left(q^{a}\right) \times \frac{q^{a+b+1}-1}{q^{a+b} \times(q-1)} \times \frac{q^{a} \times(q-1)}{q^{a+1}-1} \\
& =f\left(q^{a}\right) \times \frac{q^{a+b+1}-1}{q^{b}} \times \frac{1}{q^{a+1}-1} \\
& =f\left(q^{a}\right) \times \frac{q^{a+b+1}-1}{q^{a+b+1}-q^{b}} .
\end{aligned}
$$

Let's see another inequalities:
Lemma 8.7 If $n>5040$ is the smallest counterexample of the Robin inequality, then

$$
\frac{\log \log n}{\log q}<\left(1+\frac{1}{2 \times \log ^{2} q}\right)
$$

and

$$
\frac{\log \log \log n}{\log q}<\frac{\log \log q}{\log q}+\frac{1}{2 \times \log ^{3} q}
$$

when we assume that $q \geq 953$ is the largest prime factor of n.

Proof Let $\prod_{i=1}^{m} q_{i}^{a_{i}}$ be the representation of n as a product of the first m consecutive primes $q_{1}<\cdots<q_{m}$ with natural numbers as exponents a_{1}, \ldots, a_{m}. According to the theorems 1.3 and 1.4, the primes $q_{1}<\cdots<q_{m}$ must be the first m consecutive primes since $n>5040$ should be an Hardy-Ramanujan integer. We assume that $q_{m} \geq 953$. For $q_{m} \geq 953$, we have that

$$
\prod_{q \leq q_{m}} \frac{q}{q-1}<e^{\gamma} \times\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right)
$$

because of the lemma 8.2. We use that lemma 2.1 to show that

$$
e^{\gamma} \times \log \log n \leq f(n)<\prod_{q \leq q_{m}} \frac{q}{q-1}<e^{\gamma} \times\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right)
$$

since we assume that n is a counterexample of the Robin inequality. In this way, we obtain that

$$
\log \log n<\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right)
$$

which is the same as

$$
\frac{\log \log n}{\log q_{m}}<\left(1+\frac{1}{2 \times \log ^{2}\left(q_{m}\right)}\right)
$$

Besides, if we apply the logarithm to the both sides of the inequality, then

$$
\log \log \log n<\log \left(\log q_{m} \times\left(1+\frac{1}{2 \times \log ^{2}\left(q_{m}\right)}\right)\right)
$$

that is equivalent to

$$
\log \log \log n<\log \log q_{m}+\log \left(1+\frac{1}{2 \times \log ^{2}\left(q_{m}\right)}\right)
$$

We use that lemma 8.4 to show that

$$
\log \left(1+\frac{1}{2 \times \log ^{2}\left(q_{m}\right)}\right) \leq \frac{1}{2 \times \log ^{2}\left(q_{m}\right)}
$$

Therefore, we finally have that

$$
\frac{\log \log \log n}{\log q_{m}}<\frac{\log \log q_{m}}{\log q_{m}}+\frac{1}{2 \times \log ^{3} q_{m}} .
$$

Let's show another inequality
Lemma 8.8 For $q_{m} \geq 953$, we have that

$$
\sum_{q \leq q_{m}} \frac{\log \log q}{q_{m}}>\frac{1}{\log q_{m}}
$$

Proof This is the same as

$$
\sum_{q \leq q_{m}} \log \log q>\frac{q_{m}}{\log q_{m}}
$$

According to the lemma 8.3, it is enough to show that

$$
\sum_{q \leq q_{m}} \log \log q \geq \pi\left(q_{m}\right)>\frac{q_{m}}{\log q_{m}}
$$

when $q_{m} \geq 953$. We know that for all primes $q_{i}>q_{m} \geq 953$, then

$$
\log \log q_{i}>1
$$

Hence, it is enough to prove that

$$
\sum_{q \leq q_{m}} \log \log q \geq \sum_{q \leq 953} \log \log q \geq \pi(953)
$$

We compute that

$$
\sum_{q \leq 953} \log \log q>274
$$

However, we know that $q_{274}=1759>953$ and thus,

$$
274 \geq \pi(953)
$$

Therefore, the proof is done.

9 Proof of Main Theorems

Theorem 9.1 Robins(n) holds for all $n>5040$ when a prime number $q \leq 953$ complies with $q \nmid n$.
Proof This is a compendium of the results from the theorem 1.2 and the lemmas 7.1, 7.3, 7.4 and 7.5.

Theorem 9.2 Let $\prod_{i=1}^{m} q_{i}^{a_{i}}$ be the representation of n as a product of the first m consecutive primes $q_{1}<\cdots<q_{m}$ with natural numbers as exponents a_{1}, \ldots, a_{m}. We obtain a contradiction just assuming that $n>5040$ is the smallest integer such that Robins(n) does not hold.

Proof According to the theorems 1.3 and 1.4, the primes $q_{1}<\cdots<q_{m}$ must be the first m consecutive primes since $n>5040$ should be an Hardy-Ramanujan integer. From the theorem 9.1, we know that necessarily $q_{m} \geq 953$. Under our assumption, we know that

$$
f(n) \geq e^{\gamma} \times \log \log n
$$

For $b=1$ and the lemma 8.6, we know that

$$
f(n)=f\left(q_{i} \times m\right)=f(m) \times \frac{q_{i}^{a_{i}+2}-1}{q_{i}^{a_{i}+2}-q_{i}}
$$

for every prime q_{i} that divides n where $m=\frac{n}{q_{i}}$. If we subtract $f(m)$ to both sides of the inequality, then we obtain that

$$
f(n)-f(m) \geq e^{\gamma} \times \log \log n-f(m)
$$

Then,

$$
\begin{aligned}
f(n)-f(m) & =f(m) \times \frac{q_{i}^{a_{i}+2}-1}{q_{i}^{a_{i}+2}-q_{i}}-f(m) \\
& =f(m) \times\left(\frac{q_{i}^{a_{i}+2}-1}{q_{i}^{a_{i}+2}-q_{i}}-1\right) \\
& =f(m) \times\left(\frac{q_{i}-1}{q_{i}^{i_{i}+2}-q_{i}}\right) \\
& =f(m) \times\left(\frac{q_{i}-1}{q_{i} \times\left(q_{i}^{a_{i}+1}-1\right)}\right) \\
& =f(m) \times\left(\frac{1}{q_{i} \times \sigma\left(q_{i}^{a_{i}}\right)}\right) \\
& =f\left(m^{\prime}\right) \times f\left(q_{i}^{a_{i}-1}\right) \times\left(\frac{1}{q_{i} \times \sigma\left(q_{i}^{a_{i}}\right)}\right) \\
& =f\left(m^{\prime}\right) \times \frac{\sigma\left(q_{i}^{a_{i}-1}\right)}{q_{i}^{i_{i}-1}} \times\left(\frac{1}{q_{i} \times \sigma\left(q_{i}^{a_{i}}\right)}\right) \\
& <f\left(m^{\prime}\right) \times \frac{\sigma\left(q_{i}^{q_{i}}\right)}{q_{i}^{a_{i}}} \times\left(\frac{1}{q_{i} \times \sigma\left(q_{i}^{a_{i}}\right)}\right) \\
& =f\left(m^{\prime}\right) \times \frac{1}{q_{i}^{a_{i}+1}}
\end{aligned}
$$

where $m^{\prime}=\frac{n}{q_{i}^{a_{i}}}$ and we know that $q_{i}^{a_{i}} \| n$ and $\frac{\sigma\left(q_{i}^{a_{i}}\right)}{q_{i}^{a_{i}}}>\frac{\sigma\left(q_{i}^{a_{i}-1}\right)}{q_{i}^{a_{i}-1}}$ because of the lemma 7.2. In this way, we have that

$$
f\left(m^{\prime}\right) \times \frac{1}{q_{i}^{a_{i}+1}} \geq e^{\gamma} \times \log \log n-f(m) .
$$

We know that $\operatorname{Robins}\left(m^{\prime}\right)$ and $\operatorname{Robins}(m)$ hold, since $n>5040$ is the smallest integer such that Robins (n) does not hold. Consequently, we only need to prove that

$$
\begin{aligned}
e^{\gamma} \times \log \log m^{\prime} \times \frac{1}{q_{i}^{a_{i}+1}} & >f\left(m^{\prime}\right) \times \frac{1}{q_{i}^{a_{i}+1}} \\
& \geq e^{\gamma} \times \log \log n-f(m) \\
& >e^{\gamma} \times \log \log n-e^{\gamma} \times \log \log m
\end{aligned}
$$

As result, we have that

$$
\log \log m^{\prime} \times \frac{1}{q_{i}^{a_{i}+1}}>\log \log \left(q_{i} \times m\right)-\log \log m
$$

since $m=\frac{n}{q_{i}}$. We know that

$$
\begin{aligned}
\log \log \left(q_{i} \times m\right)-\log \log m & =\log \left(\log q_{i}+\log m\right)-\log \log m \\
& =\log \left(\log m \times\left(1+\frac{\log q_{i}}{\log m}\right)\right)-\log \log m \\
& =\log \log m+\log \left(1+\frac{\log q_{i}}{\log m}\right)-\log \log m \\
& =\log \left(1+\frac{\log q_{i}}{\log m}\right)
\end{aligned}
$$

In addition, we know that

$$
\log \left(1+\frac{\log q_{i}}{\log m}\right) \geq \frac{\log q_{i}}{\log n}
$$

using the lemma 8.4. Certainly, we will have that

$$
\log \left(1+\frac{\log q_{i}}{\log m}\right) \geq \frac{\frac{\log q_{i}}{\log m}}{\frac{\log q_{i}}{\log q_{i}} \log m}=\frac{\log q_{i}}{\log q_{i}+\log m}=\frac{\log n}{\log }
$$

As a consequence, we would have

$$
\log \log m^{\prime} \times \frac{1}{q_{i}^{a_{i}+1}}>\frac{\log q_{i}}{\log n}
$$

which is equivalent to

$$
\log n \times \log \log m^{\prime}>q_{i}^{a_{i}+1} \times \log q_{i} .
$$

However, we know that

$$
\log n \times \log \log n>\log n \times \log \log m^{\prime}
$$

and thus

$$
\log n \times \log \log n>q_{i}^{a_{i}+1} \times \log q_{i}
$$

For $n>10^{10^{10}}$, we have that $\log n \times \log \log n>1$ according to the lemma 3.4. Moreover, for $q_{i} \geq 3$, then $q_{i}^{a_{i}+1} \times \log q_{i}>1$. In addition, for $q_{1}=2$, we have that $q_{1}^{a_{1}+1} \times$ $\log q_{1}>1$ since $a_{1} \geq 20$ due to the lemma 3.1. Since the both sides of the inequality is greater that 1 for all primes q_{i} which divides n, then we can multiply the inequalities to obtain

$$
(\log n \times \log \log n)^{\pi\left(q_{m}\right)}>n \times N_{m} \times \prod_{i=1}^{m} \log q_{i}
$$

where $N_{m}=\prod_{i=1}^{m} q_{i}$ is the primorial number of order m. If we apply the logarithm to the both sides of the inequality, then we would have

$$
\pi\left(q_{m}\right) \times(\log \log n+\log \log \log n)>\log n+\log N_{m}+\sum_{i=1}^{m} \log \log q_{i}
$$

which is equivalent to

$$
\pi\left(q_{m}\right) \times(\log \log n+\log \log \log n)>\log n+\theta\left(q_{m}\right)+\sum_{i=1}^{m} \log \log q_{i} .
$$

If we apply the lemma 8.3 , then we would have

$$
1.25506 \times \frac{q_{m}}{\log q_{m}} \times(\log \log n+\log \log \log n)>\log n+\theta\left(q_{m}\right)+\sum_{i=1}^{m} \log \log q_{i} .
$$

Let's introduce the lemma 8.1 in this inequality and thus
$1.25506 \times \frac{q_{m}}{\log q_{m}} \times(\log \log n+\log \log \log n)>\log n+\left(1-\frac{1}{\log q_{m}}\right) \times q_{m}+\sum_{i=1}^{m} \log \log q_{i}$.
In addition, we can transform this into
$1.25506 \times \frac{q_{m}}{\log q_{m}} \times(\log \log n+\log \log \log n)>q_{m}+\left(1-\frac{1}{\log q_{m}}\right) \times q_{m}+\sum_{i=1}^{m} \log \log q_{i}$
because of the lemma 8.5 . If we divide the both sides by q_{m}, then

$$
1.25506 \times \frac{1}{\log q_{m}} \times(\log \log n+\log \log \log n)>1+1-\frac{1}{\log q_{m}}+\sum_{i=1}^{m} \frac{\log \log q_{i}}{q_{m}}
$$

According to the lemma 8.8, we know that

$$
-\frac{1}{\log q_{m}}+\sum_{i=1}^{m} \frac{\log \log q_{i}}{q_{m}}=\alpha>0
$$

Consequently, we would have that

$$
1.25506 \times\left(\frac{\log \log n}{\log q_{m}}+\frac{\log \log \log n}{\log q_{m}}\right)>2+\alpha .
$$

If we use the lemma 8.7, then

$$
1.25506 \times\left(1+\frac{1}{2 \times \log ^{2} q_{m}}+\frac{\log \log q_{m}}{\log q_{m}}+\frac{1}{2 \times \log ^{3} q_{m}}\right)>2+\alpha .
$$

We know that

$$
\begin{aligned}
& 1.25506 \times\left(1+\frac{1}{2 \times \log ^{2} q_{m}}+\frac{\log \log q_{m}}{\log q_{m}}+\frac{1}{2 \times \log ^{3} q_{m}}\right) \\
& \leq 1.25506 \times\left(1+\frac{1}{2 \times \log ^{2} 953}+\frac{\log \log 953}{\log 953}+\frac{1}{2 \times \log ^{3} 953}\right)
\end{aligned}
$$

and we have that

$$
1.25506 \times\left(1+\frac{1}{2 \times \log ^{2} 953}+\frac{\log \log 953}{\log 953}+\frac{1}{2 \times \log ^{3} 953}\right) \approx 1.62266460495
$$

Consequently, we have that

$$
2>1.25506 \times\left(1+\frac{1}{2 \times \log ^{2} q_{m}}+\frac{\log \log q_{m}}{\log q_{m}}+\frac{1}{2 \times \log ^{3} q_{m}}\right)>2+\alpha>2
$$

and

$$
2>2
$$

is a contradiction. To sum up, we obtain a contradiction just assuming that $n>5040$ is the smallest integer such that Robins(n) does not hold.

Theorem 9.3 Robins(n) holds for all $n>5040$.
Proof Due to the theorem 9.2, we can assure there is not any natural number $n>5040$ such that Robins(n) does not hold.

Theorem 9.4 The Riemann Hypothesis is true.
Proof This is a direct consequence of theorems 1.1 and 9.3

Acknowledgments

I thank Richard J. Lipton for helpful comments.

References

1. Akbary, A., Friggstad, Z.: Superabundant numbers and the Riemann hypothesis. The American Mathematical Monthly 116(3), 273-275 (2009). DOI doi:10.4169/193009709X470128
2. Alaoglu, L., Erdős, P.: On highly composite and similar numbers. Transactions of the American Mathematical Society 56(3), 448-469 (1944). DOI doi:10.2307/1990319
3. Choie, Y., Lichiardopol, N., Moree, P., Solé, P.: On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux 19(2), 357-372 (2007). DOI doi:10.5802/jtnb. 591
4. Edwards, H.M.: Riemann's Zeta Function. Dover Publications (2001)
5. Hertlein, A.: Robin's Inequality for New Families of Integers. Integers 18 (2018)
6. Kozma, L.: Useful Inequalities. http://www.lkozma.net/inequalities_cheat_sheet/ineq. pdf (2021). Accessed on 2021-09-27
7. Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. pures appl 63(2), 187-213 (1984)
8. Rosser, J.B., Schoenfeld, L.: Approximate Formulas for Some Functions of Prime Numbers. Illinois Journal of Mathematics 6(1), 64-94 (1962). DOI doi:10.1215/ijm/1255631807
