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Abstract— Muscle fatigue affects gait to the point of causing 

changes in your patterns. People with muscle training have 

more endurance and better recovery time from muscle fatigue 

than people without training. The study compared three classi-

fication algorithms in the analysis of gait data under normal 

conditions and different levels of muscle fatigue. Spatio-tem-

poral data from a group of people who do and do not do weight 

training were analyzed. The result showed that the classification 

accuracy of the k-nearest neighbor algorithm had the best result 

with 86.78% accuracy. The results indicated by the classifica-

tion algorithms show a difference in the muscle fatigue recovery 

process between the groups, similar to the clinical results dis-

cussed in the literature. 
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I. INTRODUCTION 

Muscle fatigue can be explained by the loss of contractile 

capacity of the muscle as a result of muscle activity and the 

decrease in the ability to produce force as a result of contin-

uous or repeated activation or intense work [1]. Severe mus-

cle fatigue can contribute to the increase in the occurrence of 

falls accidents [2], interruption of the afferent feedback sys-

tem, alteration of joint awareness [3], alteration of reflexes 

and changes in the pattern of muscle activation [4]. 

According to [5], gait adjustment as a consequence of 

muscle fatigue seems to be influenced: by the muscles in-

volved in fatigue; by the type and duration of the exercise; by 

the pre-existing physical condition and by physiological dif-

ferences between the sexes. The calf muscles, in particular, 

play an important role in postural control and locomotion, 

and muscle fatigue in this region can significantly influence 

gait behavior. 

Other studies also seek to observe the impacts that muscle 

fatigue causes on postural control and gait [6], [7]. 

Also, it is known that subjects without physical condition-

ing, referring to activities related to muscle condition, can 

reach the degree of muscle fatigue more quickly than active 

subjects. Weight training has been widely adopted by people 

with the aim of increasing muscular endurance and also in 

rehabilitation protocols. 

The objective of this study is to assess the classification 

performance of different machine learning algorithms by ver-

ifying gait data from groups of people who practice weight 

training and non-practitioners, under normal conditions and 

at different levels of muscle fatigue. Although statistical 

methods can also be used to establish a classification of 

groups, the use of machine learning allows a computational 

gain after training the model. This advantage is most evident 

in large databases. Furthermore, a set of characteristics can 

be analyzed with the trained model, while in statistics there 

would be a need for a re-analysis. 

Our hypothesis is that the effects of fatigue and the level 

of muscle recovery can affect the spatio-temporal character-

istics to the point of allowing the classification between a 

trained and untrained person. This study may contribute to 

the construction of intelligent applications that seek to help 

health and physical education professionals, making it possi-

ble to identify the levels of fatigue between people with and 

without experience during muscle physical training, allowing 

strategic decision-making during training. 

II. METHODS 

A. Subjects 

Forty-one young women, 20 weight training practitioners 

(TG) (22.00 ± 3.27 years; 1.60 ± 0.04 m; 57.10 ± 6.35 kg) 

and 21 non-practitioners (UTG) (21.76 ± 3.01 years; 1.62 ± 

0.05 m; 62.35 ± 8.50 kg) participated in this study. The TG 

group was composed of women who had performed weight 

training for less than 12 months. The inclusion criteria for the 

participants were: (i) age between 18 and 27 years; (ii) not 

present functional impairment, pain or orthopedic pathology 

in the last six months; (iii) not present any cardiovascular, 

pulmonary or neurological disease. Participants were in-

structed not to perform strenuous physical activity within 48 

hours of data collection and not to consume stimulants. 

The study was conducted in accordance with the Declara-

tion of Helsinki after local approval by the Ethics Committee. 

All subjects signed a consent form before the experiment. 



  

B. Procedures 

Each participant walked 4 min on the treadmill for ambi-

ance. Their preferred walking speed (PWS) on the treadmill 

was assessed according to the protocol [8] followed by 4 min 

of rest. The participant walked for 4 min at PWS speed before 

the fatigue protocol (PreF). Afterwards, a isometric maxi-

mum voluntary contraction (MVC) test was performed, fol-

lowed by the fatigue protocol and a second MVC test. Then, 

the participant performed three walks (0-PostF; 6-PostF; and 

12-PostF) of 4 min at PWS speed with 2 min of rest between 

them. Finally, the participant performed another MVC test. 

Gait kinematic data were collected using a motion capture 

system, with 10 infrared cameras operating at 100 Hz (Vicon 

Nexus, Oxford Metrics, Oxford, UK). Thirteen reflexive 

markers were placed on the lateral malleoli, heels, heads of 

the second and fifth metatarsals (bilaterally), the right and left 

anterior superior iliac spine, the right and left posterior supe-

rior iliac spine, and the spinous processes of the first thoracic 

vertebrae (T1). 

The MVC test and the fatigue protocol were conducted ac-

cording to [5]. The fatigue protocol adopted ensured that all 

participants had the same level of muscle fatigue during the 

N-PostF collections. 

C. Data analysis 

Kinematic data were filtered using a fourth order low pass 

band, zero lag Butterworth filter with 10 Hz cutoff frequency. 

All collections were calculated for intermediate 150 strides, 

discarding the initial and final steps. The steps were detected 

from the zero-cross velocity of the heel marker [9]. Data anal-

ysis was performed using MatLab (R2020A, MathWorks, 

Natick, MA). 

D. Classification 

The spatio-temporal variables of the kinematic data were 

used as a set of input characteristics for training and testing 

the classification algorithms. The output variable consists of 

determining two types of classes: TG or UTG. Characteris-

tics related to spatio-temporal variables were chosen due to 

the diversity of equipment that can collect these types of data. 

Nowadays it is possible to obtain spatio-temporal data 

through cameras, accelerometer, smartphone, among others. 

This facility can contribute to the development of future com-

mercial applications. 

In this study, three learning machine methods were used 

to classify the proposed dataset: k-nearest neighbors (kNN); 

random forest (RF); and support vectors machine (SVM). 

kNN is an instance-based learning algorithm that classifies 

unlabeled observations assigning a class based on the char-

acteristics of the nearest neighbors. The nearest neighbors are 

determined calculating the distance between them and the 

term k indicates the number of neighbors used to determine 

the class of the observed object [10]. Based on ensemble 

learning, the RF algorithm aims to build several decision 

trees where each one is considered a classifier, the majority 

of votes determine the final classification prediction [11]. 

SVM is a supervised learning method that seeks to minimize 

classification errors and maximize the geometric margin be-

tween classes expanding the dimensional space by building a 

hyperplane that can separate the dataset [12]. 

E. Steps for data processing 

Before applying the classification algorithms, some pro-

cedures were performed to prepare the data and define the 

best fit parameters for the construction of the learning mod-

els. First, the spatio-temporal data were submitted to feature 

selection methods, considering: the correlation coefficient; 

the degree of importance of the feature; and the low im-

portance of the feature. After choosing the most relevant 

characteristics for the classification task, the data passed a 

characteristic standardization through a scaling of the mean 

and standard deviation. Tests were performed to define the 

best parameters for the three algorithms through GridSearch. 

The training and prediction of the algorithms were exe-

cuted n=30 times. In each round, a cross-validation with 10-

Fold was used [13]. The accuracy of the algorithms is the re-

sult of the averages of cross-validation and executions. 

Dataset accuracy was analyzed in all gait conditions (PreF; 

0-PostF; 6-PostF; and 12-PostF) and separately in each 

group. 

III. RESULTS AND DISCUSSION 

A. Feature Selection 

The initial dataset of this study consisted of eight charac-

teristics: Step Time (STEP_TIME); Step Frequency 

(STEP_FREQ); Cadence (CADENCE); Step Length 

(STEP_LENG); Stride Width (STRIDE_WIDTH); Support 

Phase Duration (SUPPORT_PD); Swing Phase Duration 

(SWING_PD); and Double Support Phase Duration 

(DOUBLES_PD). There are also two columns that identify 

the gait condition (0 – PreF; 1 – 0-PostF; 2 – 6-PostF; 3 – 12-

PostF) and the group (0 – UTG; and 1 – TG). 

The Fig. 1 presents the graph of the autocorrelation be-

tween the spatio-temporal characteristics. It is possible to no-

tice a very strong correlation of the variable STEP_TIME 

with SUPPORT_PD, SWING_PD since the duration of the 

gait phases are essential components to determine the step 

time. The variables STEP_LENG and STRIDE_WDTH are 



  

related to step frequency, while STEP_FREQ and 

CADENCE are strongly correlated. 

The most relevant characteristics for the classification task 

were also analyzed, Fig. 2. The three best features evaluated 

were: STRIDE_WDTH; STEP_LENG; and DOUBLE_PD. 

It is also possible to notice that the CADENCE variable 

does not appear on the chart since it had zero importance. The 

degree of importance was calculated based on the missing 

values, on the characteristics that have only unique values, on 

the correlation between the characteristics, on the zero and 

low importance methods. 

The feature selection showed that only the variables: 

STEP_TIME; STEP_LENG; and STRIDE_WIDTH are re-

quired to perform the classification task. Therefore the other 

features were removed from the dataset. 

 

 

Fig. 1 Plot of autocorrelation between characteristic variables 

 

 

Fig. 2 Rank chart of the most important characteristics for classification 

task 

Fig. 3 presents the pair plot of the characteristics used in 

the classification algorithms. The graph presents the data sep-

arated by group. It is possible to notice a greater separation 

of the data by group when the variable STRIDE_WDTH is 

compared with the others. 

B. Classification 

The hyper-parameters were defined through the grid 

search. For the kNN algorithm, the number of neighbors and 

different types of metric were analyzed to calculate the dis-

tance. In the RF algorithm, the tree separation criteria, the 

number of trees generated, the minimum quantity of neces-

sary samples generated and the minimum quantity of samples 

necessary to form a node were analyzed. In the SVM algo-

rithm, the tolerance criterion, the regularization parameter 

and different types of kernel were analyzed. 

In this first test, classification algorithms were applied to 

estimate the accuracy in predicting which group a given set 

of spatio-temporal data belongs to. In this dataset all condi-

tions were considered. Fig. 4 presents the results of the three 

algorithms. Considering the mean and the highest value of 

the thirty executions, for this dataset, the kNN was the one 

that obtained the highest accuracy in the classification pre-

diction, with 86.78% and 90.88%, respectively. 

 

 

Fig. 3 Pair plot of selected features 

From these results, it is possible to state that the strategy 

of counting the nearest neighbor classes for this data distri-

bution, Fig. 3, was more advantageous than seeking the sep-

aration of groups with the creation of a new hyperplane or  



  

 

 

Fig. 4 Accuracy of classification algorithms under all conditions 

 

Fig. 5 Accuracy of condition classification algorithms 

 

 

 

 

 

 

 

 

 

 



  

creating a set of decision trees that seek the best path regard-

ing classification prediction. We believe that the 

STRIDE_WIDTH variable contributed to the best result of 

the kNN strategy to stand out in relation to the other algo-

rithms. 

C. Classification by Condition 

The classification algorithms were also submitted to the 

dataset under the conditions separately. The accuracy of each 

algorithm in classifying the four conditions (PreF; 0-PostF; 

6-PostF; and 12-PostF) can be observed in Fig. 5. The best 

results of accuracy in the prediction can be observed in the 

12-PostF condition. In this condition, the SVM was the algo-

rithm that presented the best accuracy (65.36%). 

Overall, all algorithms reduced their ability to predict this 

dataset. To verify if the dimensionality reduction in this case 

could be compromising the classification process, we ran the 

algorithms again with the complete dataset. However, there 

was no progress. 

The fact that the RF and SVM algorithms obtain greater 

accuracy in the 12-PostF condition means a greater spacing 

of the analyzed characteristics (STRIDE_WDTH, 

STEP_LENG, STEP_TIME) between the groups. 

From a biomechanical point of view, this difference may 

mean that a given group has a greater capacity to recover 

from muscle fatigue than the other, causing the distance in 

spatio-temporal features between the groups, facilitating the 

classification task. Through a clinical analysis, [5] it was 

found that the TG group presented better conditions for the 

execution of the fatigue protocol and better recovery of the 

MVC. Also in Lehnen, [5], it is possible to notice a lower 

stability in the TG group in relation to the UTG and in the 

12-PostF condition for both groups. 

D. Limitations 

Dataset size may have been a limiting factor in the analy-

sis under separate conditions. The lack of more strongly cor-

related attributes and the sparse distribution shown in Fig. 3 

may also have been an aggravating factor. Another cross-val-

idation method indicated for small databases, Leave-One-

Out Cross-Validation (LOOCV) was tested, there was an im-

provement in the results, but we believe that this improve-

ment was due to overfitting. Also, the researchers in [5] re-

port that the analyzed data did not show statistical differences 

between the groups. 

IV. CONCLUSION 

In this study, groups of women practitioners and non- 

practitioners of weight training walked on a treadmill before 

and after the application of a fatigue protocol. After the fa-

tigue protocol, data were collected at different rest times to 

verify the muscle recovery process. The kNN algorithm was 

able to produce the best classification result in relation to RF 

and SVM for all gait conditions. 

The results show that the use of classification algorithms 

in these cases can help in the development of an autonomous 

diagnostic system for muscle fatigue discrimination based on 

spatio-temporal characteristics of the gait. This study has po-

tential applicability in physical therapy and weight training, 

classifying and understanding the level of muscle fatigue can 

contribute to more efficient and concentrated training. Also, 

the classification of these spatio-temporal variables during 

muscle fatigue can help in the diagnosis of diseases related to 

muscle weakness and neuromuscular disorders. Clinical 

studies are of fundamental importance to understand the ob-

ject of study and the results generated by the classification 

algorithms. Although the results are promising, the research 

can be improved by parameterizing these algorithms in larger 

databases. 

For future work, it is suggested to parameterize the models 

with larger databases. Test other combinations and cross-val-

idation methods. Use other sets of features such as fractal 

properties, maximum Lyapunov exponent, linear gait varia-

bility and stability margin. 
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